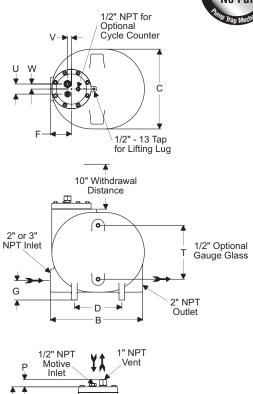
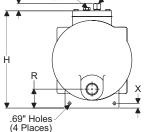
Armstrong[®] PT-3500 Series Low Profile Pump Trap

The Armstrong PT-3500 Series Low Profile Pump Trap is the low maintenance, non-electric solution to move condensate or other liquids from low points, low pressures or vacuum spaces to an area of higher elevation or pressure. Condensate can be returned at temperatures well above the 200°F (93°C) limit of conventional electric pumps without the headaches of leaking seals or cavitation problems.

Features


- Economical non-electric operation. Uses inexpensive steam, air or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Space-saving size. Low-profile body fits in tight spaces while allowing minimal fill head.
- Lower installation costs. Single trade required for installation and maintenance.
- · Peace of mind. Standard unit is intrinsically safe.
- Cast iron durability. Rugged construction material means long service life.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.
- Externally removable/replaceable seats. Seats can be replaced or cleaned without removing the mechanism assembly.


Options

Use of external check valves required for operation of pumping trap.

- Inlet Swing Check Valve NPT Bronze ASTM B 62 Teflon[®] Disc Class 150 (Minimum)
- Outlet
 Stainless Steel Check Valve
 Class 150 (Minimum)
- In-line Check Valves
 Stainless Steel Non-Slam Check Valves
- · Bronze Gauge Glass Assembly
- Steel Gauge Glass Assembly
- Removable Insulation Jacket
- Digital Cycle Counter

For a fully detailed certified drawing, refer to CDF #1041.

PT-3500 Series Pump Trap Physical Data

		PT-3508 a	nd PT-3512
		in	mm
"B"		20-1/4	514
"C"		17-3/4	451
"D"		10-9/16	268
"F"		4-3/4	120
"G"		4-5/16	110
"H"		21-11/16	550
"P"		1-5/8	41
"R"		4-5/16	110
"T"		12	305
"U"		2-1/4	27
"V"		7/8	22
"W"		1-1/4	32
"X"		1-1/16	27
Weight		PT-3508	PT-3512
Pump Trap Weight		244 (111)	243 (110)
Bronze Check Valve	lb (kg)	16 (7)	29 (13)
Stainless Check Valve		15 (7)	38 (17)

Maximum Operating Pressure: 125 psig (9 bar)

Maximum Allowable Pressure: Cast iron 150 psig @ 450°F (10 bar @ 232°C)

PT-3500 Series Low Profile Pump Trap

T-3500 Sei	ries Low Prof	ile Pump Tra	p Capacities								
								12" (305 mm) Gravity 0.09 -			
	ng Inlet sure		Lift or ressure			3508 x 2"			PT-3	3512 x 2"	
	~			Ste	am	A	ir	Ste	am	A	ir
psig	bar	psig	bar	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr
15	1.0			6,100	2,767	8,100	3,674	8,300	3,765	10,300	4,627
25	1.7			8,700	3,946	9,300	4,818	12,100	5,489	12,950	5,874
50	3.5	5	0.34	8,900	4,037	9,675	4,389	13,400	6,078	14,000	6,350
75	5	5	0.34	9,200	4,173	9,800	4,452	13,700	6,214	14,300	6,486
100	7			9,400	4,264	*	*	14,000	6,350	*	*
125	8.5			9,900	4,491	*	*	14,400	6,532	*	*
25	1.7			6,300	2,858	8,200	3,719	8,100	3,674	9,800	4,445
50	3.5			8,200	3,719	10,400	4,717	11,600	5,262	12,600	5,715
75	5	15	1	9,200	4,173	11,100	5,035	12,500	5,670	13,300	6,033
100	7			9,600	4,354	*	*	12,600	5,715	*	*
125	8.5			9,800	4,445	*	*	13,400	6,078	*	*
35	2.5			6,100	2,767	7,900	3,583	7,600	3,447	9,900	4,491
50	3.5			7,100	3,221	9,600	4,355	10,000	4,536	10,650	4,831
75	5	25	1.5	8,600	3,901	10,800	4,899	11,200	5,080	12,200	5,534
100	7			8,700	3,946	*	*	11,450	5,194	*	*
125	8.5			9,100	4,128	*	*	11,600	5,262	*	*
50	3.5			5,000	2,268	6,500	2,948	6,200	2,812	8,500	3,856
60	4			5,900	2,676	7,400	3,357	7,700	3,493	9,400	4,264
75	5	40	2.75	6,650	3,016	8,300	3,765	8,700	3,946	10,600	4,800
100	7			7,200	3,266	*	*	9,100	4,128	*	*
125	8.5			7,800	3,538	*	*	9,400	4,264	*	*
75	5			4,500	2,042	6,300	2,858	5,900	2,676	8,700	3,946
100	7	60	4	5,500	2,495	*	*	6,500	2,948	*	*
125	8.5			5,700	2,586	*	*	6,900	3,130	*	*

NOTES: Published capacities based on use of external check valves supplied by Armstrong. Although motive pressures are shown at high pressure differential (difference between motive inlet pressure and total lift or back pressure), it is preferable to use a motive pressure of 10 - 15 psig (0.65 - 1.0 bar) above discharge (outlet) pressure. This ensures longevity of economical (brass) check valves and reduces both venting time and temperature differential (on steam). Shading indicates sizing example shown on page 220. *Consult factory.

PT-3500 Capa	city Conversior	1 Factors fo	or Other Fil	ll Heads									·
Fill F	lood	mm	in	mm	in	mm	in	mm	in	mm	in	mm	
	ieau	0	0	6	152	12	305	18	457	24	610	36	914
Madal	PT-3508	0.	.7	0.85		1.0		1.1		1.2		1.	35
Model	PT-3512	0.	.7	0.	85	1	.0	1.	04	1	.08	1	.2

NOTE: Fill head measured from drain point to top of cap. See figures on page 234.

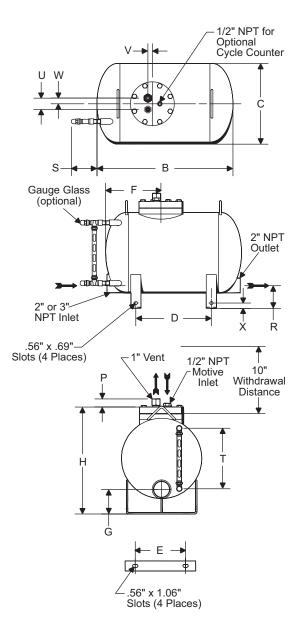
Name of Part	Material
Body	Cast iron - ASTM A48 class 30
Сар	Carbon steel SA-516-70
Cap Gasket	Graphoil
Inlet Valve Assembly	Stainless steel
Vent Valve Assembly	Stainless steel
Valve Assembly Washers	Zinc-plated steel
Plug	Steel
Mechanism Assembly and Float	Stainless steel
Springs	Inconel X-750

PT-3500 Series Low Profile Pump Trap	PT-3500 Series Low Profile Pump Trap Connection Sizes									
Model Number	PT-3	508	PT-3512							
	in	mm	in	mm						
Inlet Connection	2	50	3	75						
Outlet Connection	2	50	2	50						
Motive Pressure Connection	1/2	15	1/2	15						
Vent Connection	1	25	1	25						
Gauge Glass Connection	1/2	15	1/2	15						

PT-300 Series Horizontal Steel, Low Profile Pump Trap

The Armstrong PT-300 Series Horizontal, Low Profile Pump Trap is the low maintenance non-electric solution to move condensate or other liquids from low points, low pressures or vacuum spaces to an area of higher elevation or pressure. Condensate can be returned at temperatures well above the 200°F (93°C) limit of conventional electric condensate pumps without the headaches of leaking seals or cavitation problems.

Features


- Economical non-electric operation. Uses inexpensive steam, air or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Space-saving size. Low-profile body fits in tight spaces while allowing minimal fill head.
- Lower installation costs. Single trade required for installation and maintenance.
- Peace of mind. Standard unit is intrinsically safe.
- Durable construction. ASME code-stamped carbon steel body vessel.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.
- Externally removable/replaceable seats. Seats can be replaced or cleaned without removing the mechanism assembly.

PT-300 Pumping Trap Physical Data		
Model Number	PT- PT-	308 312
	in	mm
"В"	27	686
"C"	16	406
"D"	15	381
"Е"	10	254
"F"	11	279
"G"	5-7/16	138
"H"	21-3/16	538
"P"	1-5/8	41
"R"	4-13/16	122
"S"	5-1/32	128
"Т"	12	305
"U"	2-1/4	57
"V"	7/8	22
"W"	1-1/4	32
"Х"	1-1/16	27
Face to Face	27-1/2*	698
Weight lb (kg)	154	(70)
Number of Body/Cap Bolts	8	8
Check Valve Conn. in (mm)	2 (50)	3 (75)
Bronze Check Valves Ib (kg)	16 (7)	29 (13)
Stainless Steel Check Valves Ib (kg)	15 (7)	38 (17)

Maximum Allowable Pressure (Vessel Design): 150 psig @ 650°F (10 bar @ 343°C) Maximum Operating Pressure: 125 psig (9 bar) *Tolerance +/- 1/2"

No Fai

For a fully detailed certified drawing, refer to CDF #1001.

PT-300 Series Horizontal Steel, Low Profile Pump Trap

PT-300 Pumping Trap Materials	8
Name of Part	Series PT-300*
Rody and Can	Fabricated steel 150 psi ASME Sec. VIII design
Body and Cap	"U" stamped
Cap Gasket	Graphoil
Bolts	SA-449 steel
Nuts	None
Inlet Valve Assembly	Stainless steel
Vent Valve Assembly	Stainless steel
Valve Assembly Washers	Zinc plated steel
Plug	Steel
Mechanism Assembly	Stainless steel
Springs	Inconel X-750

PT-300 Pumping Trap Connection Sizes

		Horizon	tal Steel	
Model	PT-	308	PT-	312
	in	mm	in	mm
Inlet Connection	2	50	3	80
Outlet Connection	2	50	2	50
Motive Pressure Connection	1/2	15	1/2	15
Vent Connection	1	25	1	25
Optional Gauge Glass Connection	1/2	15	1/2	15

NOTES: Optional flanged or socketweld connections available. Consult factory. *Series PT-300 is available in all stainless steel. Consult factory.

PT-300 Pi	umping Tra	p Capacit	ies								
Motive	Pressure		t or Back		PT-308 (12" Fi	ll Head) 2" x 2"			PT-312 (12" Fi	ll Head) 3" x 2"	
monve	1103010	Pres	sure	Steam Motive		Air Motive		Steam Motive		Air N	lotive
psig	bar	psig	bar	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr
15 25 50 75 100 125	1.0 1.7 3.5 5 7 8.5	5	0.34	6,900 10,200 10,600 10,800 11,200 11,600	3,130 4,622 4,808 4,898 5,080 5,261	9,200 10,900 11,100 11,300 *	4,173 4,944 5,035 5,126 *	9,000 13,200 15,100 15,300 15,500 16,600	4,082 5,987 6,849 6,940 7,031 7,530	12,300 14,200 15,800 16,100 *	5,579 6,441 7,167 7,303 *
25 50 75 100 125	1.7 3.5 5 7 8.5	15	1	7,000 9,600 10,750 10,900 11,300	3,175 4,354 4,876 4,944 5,125	10,100 10,900 11,100 *	4,581 4,944 5,035 *	9,000 12,800 14,200 14,300 15,100	4,082 5,806 6,441 6,486 6,849	11,200 13,800 15,000 *	5,080 6,260 6,804 *
35 50 75 100 125	2.5 3.5 5 7 8.5	25	1.5	7,100 8,300 10,100 10,200 10,300	3,221 3,765 4,581 4,627 4,672	9,200 10,200 11,000 *	4,173 4,627 4,989 *	8,100 10,200 12,500 12,700 13,000	3,674 4,627 5,670 5,761 5,897	11,500 12,750 13,500 *	5,216 5,783 6,123 *
50 60 75 100 125	3.5 4 5 7 8.5	40	2.75	5,700 6,600 7,600 8,400 9,400	2,585 2,994 3,447 3,810 4,264	7,600 8,800 10,100 *	3,447 3,992 4,581 *	6,600 8,400 9,800 10,100 10,300	2,994 3,810 4,445 4,581 4,672	9,800 10,500 12,700 *	4,445 4,763 5,761 *
70 75 100 125	4.5 5 7 8.5	60	4	4,500 4,700 6,400 6,600	2,041 2,132 2,903 2,994	7,000 7,100 *	3,175 3,221 *	6,000 6,400 7,100 7,400	2,722 2,903 3,221 3,357	10,200 10,400 *	4,627 4,717 *

NOTES: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump cap. See figures on page 234. Although motive pressures are shown at high pressure differentials (difference between motive inlet pressure and total lift or back pressure), it is preferable to use a motive pressure of 10 - 15 psig (0.65 - 1 bar) above discharge (outlet) pressure. This ensures longevity of economical (brass) check valves and reduces both venting time and temperature differential (on steam). If a higher differential is used, stainless steel check valves are recommended.

PT-300	Capacity C	conve	ersion	Facto	ors fo	r Oth	er Fill	Heads	;		
E:11	Head	in	mm	in	mm	in	mm	in	mm	in	mm
ГШ	0	0	6	152	12	305	24	610	36	914	
Model	PT-308	0	0.7 0.1		85		1.0	1	.2		1.3
Model	PT-312	.7	0.8	85		1.0	1.08			1.2	

NOTES: Fill head is measured from drain point to top of cap. See figures on page 234.

Options

Use of external check valves required for operation of pumping trap.

- Inlet Swing Check Valve NPT Bronze ASTM B 62 Teflon[®] Disc Class 150 (Minimum)
- Outlet
 - Stainless Steel Check Valve Class 150 (Minimum)
- In-line Check Valves
- Stainless Steel Non-Slam Check Valves
- Bronze Gauge Glass Assembly
- Steel Gauge Glass Assembly
- Removable Insulation Jacket
- Digital Cycle Counter

Armstrong[®] Sizing and Selection— PT-100/200/300/3500/400/DD-4/DD-6 Series

The Armstrong non-electric pump trap is sized based on actual condensate load (lb/hr or kg/hr) being pumped. The following steps are used to size the pump.

- Determine the total condensate load to be pumped in lb/hr or kg/hr. See table on page 217 for conversion factors.
- Determine the total back pressure the pump will operate against. Total back pressure is the sum of the following:
- Vertical lift expressed in psig. See conversion formula below to convert lift to psig
- Existing pressure in condensate return line or D.A. tank
- Frictional loss from pipe, valves and fittings
- Determine type of motive gas to be used (steam, air or other inert gas) and pressure available.

Example:

- · Condensate load = 7,100 lb/hr (3,221 kg/hr).
- Total back pressure = 25 psig (1.5 bar)
- (25 foot vertical lift = 10.8 psig, 14 psig in condensate return line).
- Motive pressure is steam at 50 psig (3.5 bar).

Solution: Model PT-3508

Find 25 psig total lift or back pressure in column two of Low Profile Pump Trap Capacities table on page 217. Then find 50 psig motive pressure in column one. Move across the capacity table until you reach a model number with the correct capacity. A PT-3508 has been highlighted on page 217 for this example.

Either a closed reservoir pipe or a vented receiver is required for proper condensate storage during the pump-down cycle of the pumping trap.

For vented/open system receiver sizing:

- Determine the pressure from where the condensate is being discharged.
- Determine condensate load.

Reference Percentage of Flash Steam chart on page 221 to find the pressure that corresponds with the discharge condensate pressure. For this example, use 15 psig.

Follow 15 psig on the horizontal axis where it intersects the curve. Move left from the intersecting lines to the vertical axis for the percentage of flash steam that is created. For this example it will be 3% (see shaded area on Percentage of Flash Steam chart).

Multiply 3% by the condensate load. Using example above 7,100 lb/hr. 7,100 x .03 = 213 lb/hr flash steam.

Using the Vented Receiver Sizing table on page 221, find the amount of flash steam in column one. Follow the table across to determine the size of the vented receiver. (See shaded area on Inlet Reservoir Pipe Sizing table—page 221 for this example.)

For closed reservoir piping:

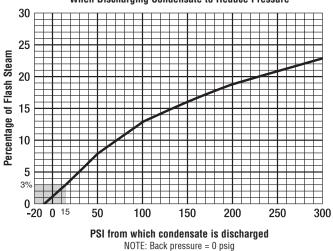
1. Determine condensate load (using example above 7,100 lb/hr).

Reference the inlet reservoir pipe sizing for closed systems on page 221. Find 7,100 lb/hr in column one. Move horizontally across to find proper pipe size. (Note length or diameter may be slightly enlarged when capacity falls between given condensate loads in column one.) Selection is shaded.

Metric Conversion Formulas

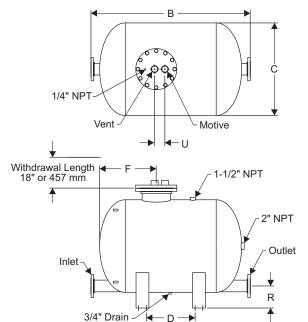
Convert lb/hr to kg/hr—By dividing by 2.2046 Example: 1,800 lb/hr ÷ 2.2046 = 816 kg/hr Convert psig to bar—By dividing by 14.5 Example: 15 psi ÷ 14.5 = 1.03 bar Convert psig to kg/cm²—By dividing by 14.22 Example: 15 psi ÷ 14.22 = 1.05 kg/cm²

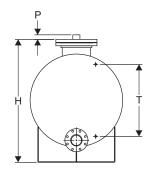
Reservoir Sizing— PT-100/200/300/3500/400/DD-4/DD-6 Series

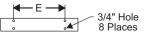

Condens	ate Load		Reservoir Pipe Diameter												
		in	mm	in	mm	in	mm	in	mm	in	mm	in	mr		
lb/hr	kg/hr	2	50	3	75	4	100	6	150	8	200	10	25		
up to		'	Length of Pipe												
		ft	m	ft	m	ft	m	ft	m	ft	m	ft	m		
500	227	4	1.2	2-1/2	0.7	1-1/2	0.4								
1,000	453	4-1/2	1.4	2	0.6	1-1/2	0.4						Í		
1,500	680	7	2.1	3	0.9	2	0.6						Í		
2,000	907	9	2.7	4	1.2	2-1/2	0.7						Í		
2,500	1,134	11	3.4	5	1.5	3	0.9	1-3/4	0.5				Í		
3,000	1,360	13-1/2	4.1	6	1.8	3-1/2	1.1	2	0.6				Í		
4,000	1,814	18	5.5	8-1/2	2.6	5	1.5	2-1/2	0.7				Í		
5,000	2,268			10	3.0	6	1.8	3	0.9	1-1/2	0.4		Í		
6,000	2,722			12	3.7	7	2.1	3-1/2	1.1	2	0.6		Í		
7,000	3,175			14-1/2	4.4	8-1/2	2.6	4	1.2	2	0.6		1		
8,000	3,629			16-1/2	5.0	9-1/2	2.9	4-1/2	1.4	2-1/2	0.7	1-1/2	0.4		
9,000	4,082					11	3.4	5	1.5	3	0.9	2	0.6		
10,000	4,536					12	3.7	5-1/2	1.7	3	0.9	2	0.6		
11,000	4,990					13	4.0	6	1.8	3-1/2	1.1	2	0.0		
12,000	5,443					14	4.3	6-1/2	2.0	4	1.2	2-1/2	0.7		

NOTE: When draining condensate from a single piece of equipment in a **closed system**, to achieve maximum energy efficiency a reservoir should be installed horizontally above and ahead of the pump trap. Sufficient reservoir volume is required above the filling head level to hold condensate during the pump trap discharge cycle. The chart above shows the minimum reservoir sizing, based on the condensate load, to prevent equipment flooding during the pump trap discharge cycle.

Fla Ste			eiver neter	Receiver Length		Vent Line Diameter	
lb/hr	kg/hr	in	mm	in	mm	in	mm
up to							
75	34	4	102			1-1/2	40
150	68	6	152			2	50
300	136	9	229	36	914	2-1/2	65
600	272	10	254	30	914	3	75
900	408	12	300			4	100
1,200	544	16	405			6	150
2,000	907	20	508			8	200


NOTE: When draining from single or multiple pieces of equipment in an **open system**, a vented receiver should be installed horizontally above and ahead of the pump trap. In addition to sufficient holding volume of the condensate above the fill head of the pump trap to hold the condensate during the pump trap cycle, the receiver **must** also be sized to allow enough area for flash steam and condensate separation. An overflow could also be added when required. The minimum recommended water seal is 12" (300 mm). This table shows proper receiver tank sizing based on flash steam present. See the chart at right to calculate the percentage of flash steam at a given pressure drop.


Percentage of Flash Steam Formed When Discharging Condensate to Reduce Pressure



Armstrong[®] PT-516 High Capacity Pump Trap

PT-516 Capacity Conversion Factors for Other Fill Heads												
Fill Hand	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Fill Head	0	0	6	152	12	305	16	406	24	610	36	914
PT-516	0	.7	0.	75	0	.8	0.	85	1	.0	1.	08

Effective recovery and return of hot condensate are essential to overall plant efficiency while conserving energy. Large amounts of condensate provide the best opportunities to save energy.

The Armstrong PT-516 High Capacity Pump Trap is the low maintenance, non-electric solution to moving large amounts of condensate and other liquids from low points, low pressures or vacuum spaces to an area of higher elevation or pressure. Condensate can be returned at temperatures well above the 200°F (93°C) limit of conventional electric pumps without the headaches of leaking seals or cavitation.

Features

- Economical non-electric operation. Uses inexpensive steam air or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Lower installation costs. Single trade required for installation and maintenance.
- · Peace of mind. Standard unit is intrinsically safe-explosion-proof.
- Durable construction. ASME code-stamped carbon steel body vessel.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.
- Externally removable/replaceable seats. Seats can be replaced or cleaned without removing the mechanism assembly.

For a fully detailed certified drawing, refer to FH1367.

	in	mm
Inlet Connection	4 150# ANSI Flg.	100 150# ANSI Flg.
Outlet Connection	4 150# ANSI Flg.	100 150# ANSI Flg.
Motive Connection	2 NPT	50 NPT
Vent Connection	2 NPT	50 NPT
Gauge Glass Conn.	1/2 NPT	15 NPT
"B"	62	1,574
"C"	36	914
"D"	19-1/16	484
"E"	20	508
"F"	22	559
"H"	48	1,219
"P"	1-3/4	44
"R"	8-3/4	222
"T"	28	711
"U"	4	100
Weight	807	366
Number of Bolts	12	12

Maximum Operating Pressure on standard unit: 150 psig (10 bar).

For higher pressure, consult factory.

Maximum Allowable Pressure (standard vessel deisgn): 150 psig @ 500°F (10 bar @ 277°C). 300 psi (21 bar) vessel available upon request.

PT-516 High Capacity Pump Trap

Typical Applications

- · Low pressure heating systems
- Process heat exchanger or coils with modulating steam control
- Remote installations (tracing, tank farms or remote coils)
- Systems under vacuum
- · Hazardous (explosion proof) areas
- · Caustic environments
- · Sumps or submersed areas

PT-516 High-Capacity Pump Trap Materials

Name of Part	Description
Cap, Body, Bolting	Fabricated steel 150 psi ASME Sec. VIII design "U" stamp coded
Cap Gasket	Stainless steel spiral wound
Inlet Valve Assembly	Stainless steel
Vent Valve Assembly	Stainless steel
Mechanism Assembly: Frame, Float and Spring	Stainless steel

NOTES: 300 psi ASME vessel available upon request. PT-516 available in all stainless steel. Consult factory.

Armstrong PT-516 Pump Trap Sizing and Selection

PT-516 P	PT-516 Pump Trap Capacities							
Motivo	Pressure	Total Lif	t or Back	4" x 4" Connections 24" Fill Head				
WOUVE	riessure	Pres	sure	Steam Motive		Air Motive		
psig	bar	psig	bar	lb/hr	kg/hr	lb/hr	kg/hr	
15	1.0			28,962	13,137	57,619	26,136	
25	1.7			37,162	16,857	61,911	28,083	
35	2.5			42,563	19,307	64,738	29,365	
50	3.5			48,288	21,903	67,735	30,725	
60	4	5	0.34	51,214	23,231	69,267	31,420	
70	4.5	5	0.34	53,688	24,138	70,562	32,007	
75	5			54,796	24,855	71,142	32,270	
100	7			59,414	26,950	73,559	33,366	
125	8.5			62,995	28,575	*	*	
150	10.34			65,922	29,902	*	*	
25	1.7			36,720	16,656	50,783	23,035	
35	2.5			40,611	18,421	54,293	24,627	
50	3.5			45,196	20,501	58,013	26,315	
60	4			47,740	21,655	59,915	27,177	
70	4.5	15	1	50,005	22,682	61,523	27,907	
75	5			51,054	23,159	62,243	28,233	
100	7			55,675	25,254	65,243	29,594	
125	8.5			59,552	27,013	*	*	
150	10.34			62,923	28,542	*	*	

NOTES: Published capacities above are based on actual steam testing using a minimum 200°F condensate. Published capacities are based on the use of external check valves supplied by Armstrong. *Consult factory.

Motive Pressure		Total Lif	t or Back	4" x 4" Connections 24" Fill Head				
Motive	Pressure	Pres	sure	Steam	Motive	Air M	otive	
psig	bar	psig	bar	lb/hr	kg/hr	lb/hr	kg/hr	
35	2.5			29,212	13,251	46,238	20,973	
50	3.5			33,413	15,156	50,962	23,116	
60	4			35,672	16,181	53,376	24,211	
70	4.5	25	1.5	37,646	17,076	55,418	25,138	
75	5	20	1.0	38,548	17,485	56,313	25,544	
100	7			42,454	19,257	60,141	27,280	
125	8.5			45,649	20,706	*	*	
150	10.34			*	*	*	*	
50	3.5			26,210	11,889	41,244	18,708	
60	4			27,353	12,407	44,028	19,971	
70	4.5			28,319	12,846	46,382	21,039	
75	5	40	2.75	28,752	13,042	47,435	21,517	
100	7			30,555	13,860	51,828	24,022	
125	8.5			31,954	14,494	*	*	
150	10.34			33,097	15,013	*	*	
70	4.5			25,973	11,781	32,026	14,527	
75	5			26,373	11,963	33,514	15,202	
100	7	60	4	28,042	12,720	40,951	18,575	
125	8.5			29,336	13,307	*	*	
150	10.34			30,394	13,787	*	*	
100	7			23,892	10,837	34,893	15,827	
125	8.5	80	5.5	24,231	10,991	*	*	
150	10.34			24,570	11,145	*	*	

Options

External check valves required for use of pumping trap.

Inlet/Outlet Check Valve

CS/SS Wafer Style or All Stainless Steel Wafer Style

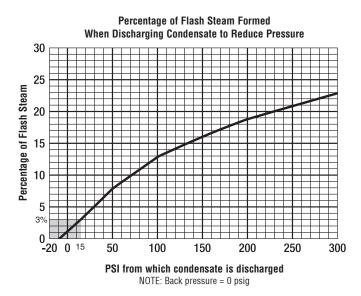
- · Bronze Gauge Glass Assembly
- Removable Insulation Jacket
- Digital Cycle Counter

Condensate Recovery Equipment

Armstrong[®] Reservoir Sizing — DD-12/PT-516 Series High Capacity

Either a closed reservoir pipe or a vented receiver is required for proper condensate storage during the pump-down cycle of the pumping trap. Refer to the tables for sizing.

For Closed Reservoir Piping


- 1. Determine condensate load.
 - Example 30,000 lb/hr:

Reference the Inlet Reservoir Pipe table top right. Find the 30,000 lb/hr condensate load in column one. Move across the columns to find the proper pipe sizing.

For Vented Receiver Sizing

- Determine the pressure from where the condensate is being discharged.
- 2. Determine condensate load.
- Reference the chart below to find the pressure that corresponds with the discharge condensate pressure. For this example, use 15 psig.
- Follow 15 psig to where it intersects the "0" psig curve. Move to the left from intersecting lines for the percentage of flash that will be created. For this example, it will be 3%.
- Multiply the 3% by the condensate load. For this example, it is 30,000 lb/hr. Thus, 30,000 x .03 = 900 lb/hr of flash steam.

Using the Vented Receiver table bottom right, find the amount of flash steam in column one. Follow the table across to determine the sizing of the vented receiver.

PT-516 Inlet Reservoir Pipe Sizing for Closed Systems								
Condensate		Reservoir Pipe Diameter (in)						
Load lb/hr	8	10	12	16	20	24		
up to		L	ength of	Pipe (feet)			
10,000	6-1/2	6	5	3	2			
20,000	12	11-1/2	10	7	4			
30,000		12	10-1/2	9	6	4		
40,000		17	14	12	8	6		
50,000			16	13	9	6		
60,000				15	11	8		
70,000					15	10		

NOTE: When BP/MP is less than 50%, the reservoir diameters above can be reduced by 1/2" (15 mm). When draining condensate from a single piece of equipment in a **closed system**, to achieve maximum energy efficiency (see Closed System figure on page 234) a reservoir should be installed horizontally above and ahead of the pump trap. Sufficient reservoir volume is required above the filling head level to hold condensate during the pump trap discharge cycle. The table above shows the minimum reservoir sizing, based on the condensate load, to prevent equipment flooding during the pump trap discharge cycle.

PT-516 Vented Receiver for an Open System							
Flash Steam lb/hr	Receiver Diameter (in)	Receiver Length (in)	Vent Line Diameter (in)				
up to							
1,000	16	60	6				
2,000	20	60	8				
3,000	24	60	8				
4,000	26	60	10				
5,000	28	60	10				
6,000	30	72	12				
7,000	32	72	12				
8,000	36	72	14				

NOTE: When draining from single or multiple pieces of equipment in an **open system**, a vented receiver should be installed horizontally above and ahead of the pump trap (see Open System figure on page 234). In addition to sufficient holding volume of the condensate above the fill head of the pump trap to hold the condensate during the pump trap cycle, the receiver must also be sized to allow enough area for flash steam and condensate separation. An overflow could also be added when required. The minimum recommended water seal is 12" (305 mm). The table above shows proper receiver tank sizing based on flash steam pressure drop.

PT-300LL/PT-400LL Light Liquid Pump Traps

Features

- Economical non-electric operation. Uses inexpensive steam or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Lower installation costs. Single trade required for installation and maintenance.
- · Peace of mind. Standard unit is intrinsically safe.
- Durable construction. ASME code-stamped carbon steel body vessel.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.
- Externally removable/replaceable seats. Seats can be replaced or cleaned without removing the mechanism assembly.
- Specific gravity range. Pumps can accommodate specific gravity down to 0.65.

Typical Applications

- · Hydrocarbon knockout drum/separator
- Flare header drain
- Applications where the specific gravity of the liquid could be as low as 0.65
- · Applications where hydrocarbons may be present

Technical Data

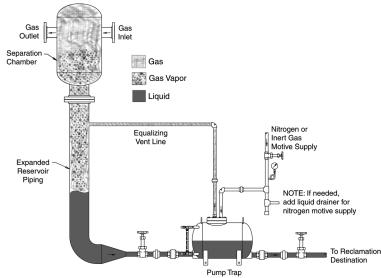
Back Pressure

- Maximum back pressure for the PT-300LL or PT-400LL is 60 psig (4.1 bar)
- **Motive Pressure**
- Maximum motive pressure (Nitrogen or Inert Gas) is
 100 psig (6.9 bar)

NOTE: To determine the lb/hr of liquid being pumped, use the following formula:

lb/hr of liquid = capacities x specific gravity of liquid

To size the Light Liquid Pumps, use the sizing charts on pages 215 and 219.


Consult Armstrong for engineered pre-piped receiver packages.

PT-300LL Light Liquid Pump Trap

PT-400LL Light Liquid Pump Trap

Hydrocarbon Knockout Drum Separator

Description

Armstrong's Double Duty[®] Series steam trap/pump combination offers a low profile solution to draining heat exchangers in various applications.

The Double Duty[®] 4 is a low profile pump that offers you the versatility of combining a pump within a steam trap to aide in condensate drainage from a heat exchanger under all operating conditions.

Features

- Economical. non-electric operation
- Low-maintenance operation. No leaking seals, impeller or motor problems. No NPSH issues.
- Space-saving size. Low-profile body fits in tight spaces while allowing minimal fill head.
- Lower installation costs. Single trade installation.
- · Peace of mind. Intrinsically safe.
- Ductile iron durability. Rugged construction material means long service life.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The trap/pump can be used in pits or sumps without fear of electrocution or circuit breaker defaults.

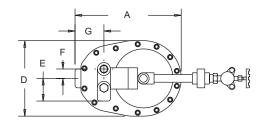
Maximum Operating Conditions

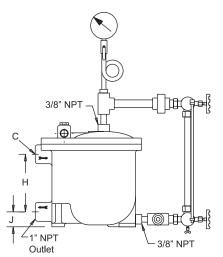
Maximum allowable pressure DD-4 72 psig @ 320°F (5 bar @ 160°C)

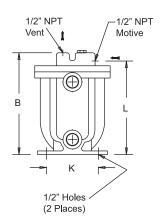
Maximum operating pressure:

DD-4 72 psig @ 320°F (5 bar @ 160°C)

Materials


Body:	Ductile iron
Mechanism:	All stainless steel
Springs:	304 Stainless steel
Float:	All stainless steel


For a fully detailed certified drawing, refer to CD-2030.


Double Duty [®] 4 Physical Data		
	in	mm
"A"	11-3/16	284
"В"	10-13/16	274
"C"	1	25
"D"	8	203
"E"	2-7/16	61
"F"	1	25
"G"	3	76
"H"	6-1/8	155
"၂"	1-5/8	41
"K"	5-1/2	140
"L"	9-15/16	251
Weight Ib (kg)	37	(17)

Double Duty® 4

Double Duty® 4 Steam Trap/Pump Combination

Double Duty [®] 4 Pump Capacities							
Мо	otive	Back P	ressure	Capacity			
psi	bar	psi	bar	lb/hr	kg/hr		
15 25 50 70	1 1.7 3.5 4.5	5	0.34	220 300 348 350	100 136 158 159		
25 50 70	1.7 3.5 4.5	15	1	220 345 348	100 156 158		
35 50 70	2.5 3.5 4.5	25	1.5	220 325 348	100 147 158		
50 60 70	3.5 4 4.5	40	2.75	220 300 335	100 136 152		
70	4.5	60	4	220	100		

NOTE: Published capacities are based on the use of external check valves supplied by	
Armstrong. Fill head measured from drain point to top of pump case.	

Capacity Conversion Factors for Other Filling Heads						
Filling Head						
in	0	2	6			
mm	0	50	152			
Double Duty DD-4	.65	1.0	1.10			

NOTE: Fill head measured from drain to top of cap.

Differenti	al Pressure	Capa	acity
psi	bar	lb/hr	kg/hr
5	0.34	1,342	610
10	0.7	1,980	900
20	1.4	2,860	1300
30	2.1	3,410	1550
40	3	3,795	1725
50	3.4	4,070	1850
60	4.1	4,235	1925
70	4.8	4,400	2000

Description

Armstrong's Double Duty[®] Series steam trap/pump combination offers a low profile solution to draining heat exchangers in various applications.

The Double Duty[®] 6 is an ASME code stamped carbon steel vessel. The Double Duty[®] 6 offers you the versatility of combining a pump within a steam trap to aide in condensate drainage under all operating conditions.

Features

- Economical. non-electric operation
- Low-maintenance operation. No leaking seals, impeller or motor problems. No NPSH issues.
- Space-saving size. Low-profile body fits in tight spaces while allowing minimal fill head.
- Lower installation costs. Single trade installation.
- Peace of mind. Intrinsically safe.
- ASME Carbon Steel durability. Rugged construction material means long service life.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The trap/pump can be used in pits or sumps without fear of electrocution or circuit breaker defaults.

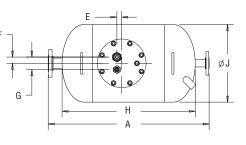
Maximum Operating Conditions

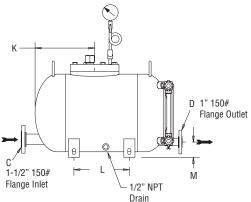
Maximum allowable pressure DD-6 200 psig @ 400°F (14 bar @ 204°C)

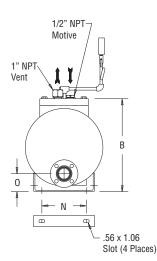
Maximum operating pressure: DD-6 200 psig @ 400°F (14 bar @ 204°C)

Materials

Body:	ASME Code Starr
Springs:	Inconel X-750
Internals:	All stainless steel


For a fully detailed certified drawing, refer to CD2035.


Code Stamped Carbon Steel


Double Duty® 6 Physical D	ata	
	in	mm
"A"	29	737
"В"	16-11/16	424
"С"	1-1/2	38
"D"	1	25
"E"	7/8	22
"F"	1-1/8	28
"G"	2-1/4	57
"H"	24	610
"J"	14	356
"К"	10-13/16	275
"L"	10	254
"M"	2-13/16	71
"N"	8	203
"0"	3-3/16	81
Weight Ib (kg)	140	(64)

Double Duty® 6

Double Duty® 6

Steam Trap/Pump Combination

Armstrong

Double Duty	/® 6 Pump Cap	acities				
Mo	otive	Back Pressure Capacity				
psi	bar	psi	bar	lb/hr	kg/hr	
15	1			2,400	1,089	
25	1.7			3,000	1,361	
50	3.5			4,000	1,814	
75	5			4,500	2,041	
100	7	5	0.34	4,600	2,087	
125	8.5			4,700	2,132	
150	10.34			4,800	2,177	
175	12			4,800	2,177	
200	14			4,600	2,087	
25	1.7			2,000	907	
50	3.5			2,800	1,270	
75	5			3,400	1,542	
100	7	15	4	3,600	1,633	
125	8.5	15	1	3,700	1,678	
150	10.34			3,800	1,724	
175	12			3,600	1,633	
200	14			3,500	1,588	
35	2.5			1,800	816	
50	3.5			2,300	1,043	
75	5			2,900	1,315	
100	7	25	1.5	3,000	1,361	
125	8.5	20	1.0	3,000	1,361	
150	10.34			2,900	1,315	
175	12			2,500	1,134	
200	14			2,300	1,043	
50	3.5			1,400	635	
75	5			2,000	907	
100	7			2,400	1,089	
125	8.5	40	2.75	2,500	1,134	
150	10.34			2,500	1,134	
175	12			1,800	816	
200	14			1,700	771	
75	5			1,500	680	
100	7			1,800	816	
125	8.5	60		2,000	907	
150	10.34	60	4	1,700	771	
175	12			1,500	680	
200	14			1,400	635	

NOTE: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump case.

Double Duty® 6 Tra	o Capacities		
Differentia	I Pressure	Capa	city
psi	bar	lb/hr	kg/hr
2	0.14	9,500	4,309
5	0.34	12,400	5,625
10	0.7	15,000	6,804
25	1.5	20,400	9,253
50	3.5	22,500	10,206
75	5.2	22,500	10,206
100	6.9	22,500	10,206
150	10.3	22,500	10,206
200	13.8	22,500	10,206

Capacity Conversion Factors for Other Filling Heads					
Filling Head					
in	0	6	12	* 24 or greater	
mm	0	150	305	* 620 or greater	
Double Duty DD-6	0.7	1.0	1.08	* Consult factory	

NOTE: Fill head measured from drain to top of cap.

Description

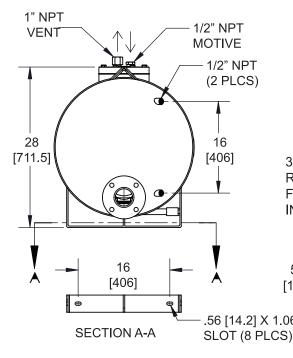
Armstrong's Double Duty-12 steam trap/pump combination offers a unique solution for draining condensate from heat exchangers and coils in various applications.

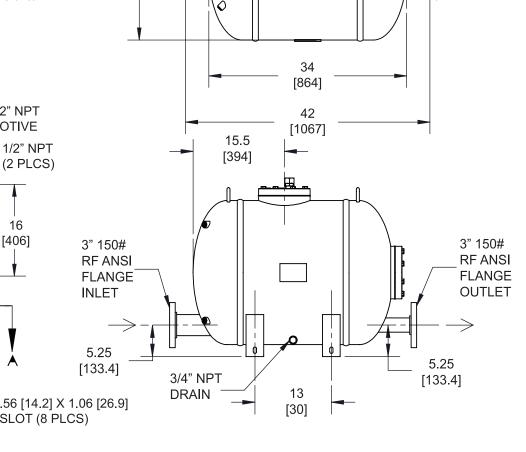
The Double Duty-12 is an ASME code stamped carbon steel vessel which offers you the versatility of combining a pump mechanism within a steam trap to assist in condensate drainage under all operating conditions.

Features

- ASME Section VIII "U" stamped vessel
- Inconel X-750 springs for long service life
- All stainless steel internals
- Easy access to the steam trap mechanism without removing cap assembly
- Externally removable vent and motive seats
- Separate pump and trap mechanisms

Maximum Operating Conditions


Maximum allowable pressure: 200 psig @ 400°F (14 bar @ 204°C) Maximum operating pressure: 200 psig @ 400°F (14 bar @ 204°C)


(Consult factory for different pressure/temperature ratings)

Materials

Body: Springs: Internals: ASME code carbon steel Inconel X-750 Stainless steel

For a fully detailed certified drawing, refer to CD-2472.

.87

[22.1]

2.25

[57.2]

1.125 [28.58]

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

24

[610]

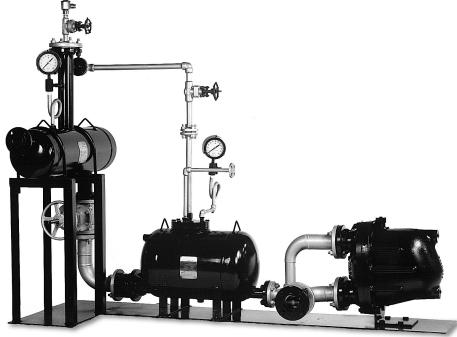
Double Duty® 12

Steam Trap/Pump Combination

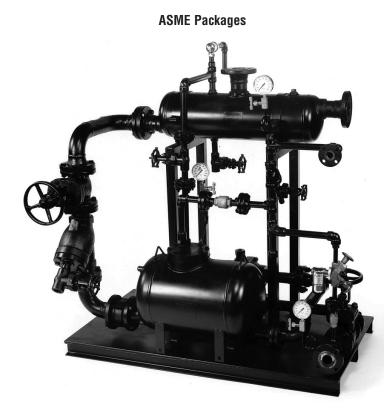
Armstrong

Double Duty [®] 12 Pump Capacities						
Mo	tive	Back P	ressure	Capa	acity	
psi	bar	psi	bar	lb/hr	kg/hr	
15 25 50 75 100 125 150 175 200	1 1.7 3.5 5 7 8.5 10.34 12 14	5	0.34	9,800 12,900 16,500 18,200 18,900 19,300 19,800 19,900 19,900	4,445 5,581 7,484 8,255 8,573 8,754 8,981 9,026 9,026	
25 50 75 100 125 150 175 200	1.7 3.5 5 7 8.5 10.34 12 14	15	1	8,500 12,900 14,800 16,000 16,400 17,200 17,300 17,300	3,856 5,851 6,713 7,257 7,439 7,802 7,847 7,847	
35 50 75 100 125 150 175 200	2.5 3.5 5 7 8.5 10.34 12 14	25	1.5	7,200 10,300 12,300 13,700 13,700 14,700 14,800 15,000	3,266 4,672 5,579 6,214 6,214 6,668 6,713 6,804	
50 75 100 125 150 175 200	3.5 5 7 8.5 10.34 12 14	40	2.75	6,700 9,500 10,600 10,900 11,300 11,300 11,400	3,039 4,309 4,808 4,944 5,126 5,126 5,126 5,171	
75 100 125 150 175 200	5 7 8.5 10.34 12 14	60	4	6,900 8,300 8,300 8,400 8,400 8,600	3,130 3,765 3,765 3,810 3,810 3,901	
100 125 150 175 200	7 8.5 10.34 12 14	80	5.5	6,400 6,400 7,200 7,200 7,300	2,903 2,903 3,266 3,266 3,311	

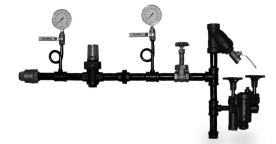
NOTE: Published capacities are based on the use of external check valves supplied by Armstrong.


Capacity Conversion Factors for Other Filling Heads					
Filling Head					
in	0 6 12 24 * 24 or greater				
mm	0	150	305	610	* 620 or greater
Double Duty DD-12	.7	.85	1	1.08	* Consult Factory

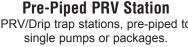
Double Duty [®] 12 Trap Capacities					
Differential Pressure		Capactiy			
psi	bar	lb/hr	kg/hr		
2	.14	21,500	9,752		
5	.34	28,700	13,018		
10	.7	35,900	16,284		
25	1.5	52,100	23,632		
50	3.5	59,600	27,034		
75	5.2	72,000	32,659		
100	6.9	81,000	36,741		
150	10.3	93,000	42,184		


NOTE: Fill head measured from drain to top of cap. Weight in lb/kg: 348 (158)

Armstrong can design and fabricate custom packages to fit your application needs.


Standard

Armstrong can design and fabricate all ASME packages to meet your plant piping requirements.


Armstrong's standard simplex (shown), duplex, triplex or quadraplex packages are unparalleled in quality and craftsmanship.

Accessories

Pre-Piped PRV Station single pumps or packages.

PRV/Drip trap stations, pre-piped to

Horizontal ASME Reservoirs/Horizontal Flash Tanks

ASME stamped vessels designed for condensate collection or use as horizontal flash tanks. (Horizontal flash tanks with sparge tubes and drop legs are also available - consult factory)

Insulation Blankets

Pumps

Receivers

Exhaust Heads Eliminate water carryover in atmospheric vent pipe.

Digital Cycle Counters

- Open- or closed-loop designs
- Optional external dry contacts
- · Intrinsically safe models available (consult factory)

Check Valves

- Stainless steel in-line non-slam check valves
- Bronze/stainless steel (standard) · Cast steel/stainless steel wafer-
- style (flanged pumps) Stainless steel/stainless steel
- wafer-style (flanged pumps)
- Bronze (standard)

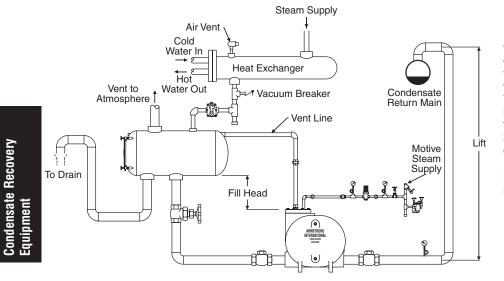
Level Gauges

- Bronze glass gauge (standard)
- Carbon steel glass gauge
- · Reflex gauge (HPI Service)consult factory

Pump/Package Accessories

Low Boy[™] packages enable you to utilize mechanical pump technology in limited height applications.

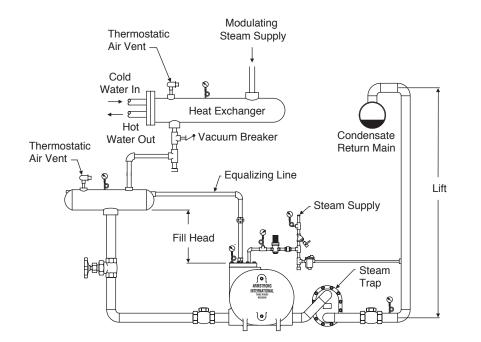
Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.


Equipment **Condensate Recovery**

Options

Use of external check valves required for operation of pumping trap.

- Inlet Swing Check Valve NPT Bronze ASTM B 62 Teflon® Disc Class 150 (Minimum)
- Outlet Stainless Steel Check Valve Class 150 (Minimum)
- In-line Check Valves Stainless Steel Non-Slam Check Valves
- · Bronze Gauge Glass Assembly
- · Steel Gauge Glass Assembly
- · Removable Insulation Jacket
- · Digital Cycle Counter



Multiple or single traps discharging to vented receiver.

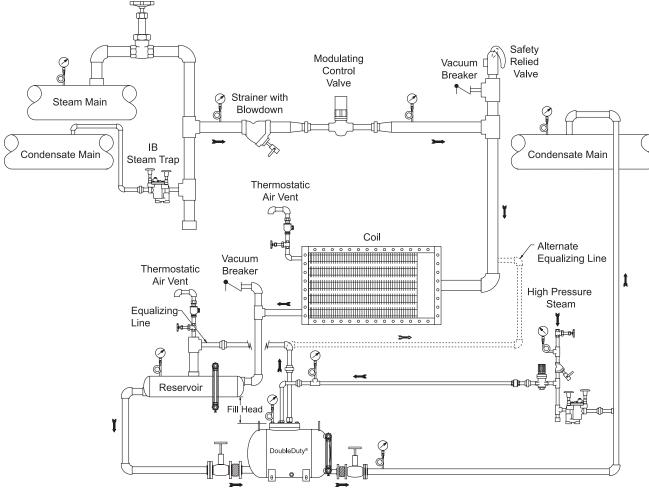
OPEN SYSTEMS

For the majority of applications, a steam trap is recommended on each piece of heat exchange equipment. The steam trap, or traps, discharge to a vented receiver where flash steam will be vented to the atmosphere. The pump trap is located downstream and below the vented receiver, allowing for proper fill head height. See tables on page 221 and 224 for vented receiver and vent sizing for an open system.

Note 1: Drip trap may be discharged into the receiver, the return line or to the drain.

Draining steam coil or heat exchanger when steam pressure may exceed the return line pressure, a steam trap is required on the discharge side of the pump trap. Request installation and operation manual IB-100.

CLOSED SYSTEMS

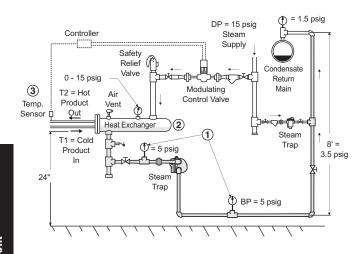

Applications exist where it is desirable to tie the vent line back into the heat exchange space, equalizing the pressure in the heat exchanger, reservoir/piping and the pump trap. This allows water to flow by gravity down to the pump where it can be returned. Valuable Btu's remain within the system due to no flash steam loss to the atmosphere through the vent. Closed system applications can also be used to drain liquid from the equipment under a vacuum. See installation and operation manual IB-100. See tables on pages 221 and 224 for reservoir pipe sizing.

Note 1: If steam motive is used, the drip trap may be discharged into the return line or to the drain.

Note 2: Vent piping from the pump trap can be connected to the inlet side of the equipment being drained if the pressure drop across the equipment is less than .5 psi (0.03 bar) and there is a minimum of 24" (609 mm) of fill head present.

Note 3: A vacuum breaker must be installed if the vent piping from the pump trap is connected to the receiver. If the equipment modulated down to a sub-atmospheric condition, the vacuum breaker will open to equalize the system and provide adequate drainage.

Common Applications for Condensate Armstrong Pump Traps


- Air Heating Coils
- Plate and Frame Heaters
- Jacketed Kettles
- Vacuum Space
- Flash Tanks
- Shell and Tube Heat Exchangers
- Absorption Chillers
- Low Pressure Applications

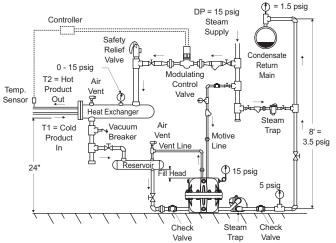
Any application using modulated control.

Condensate Recovery Equipment

Condensate Drainage From Modulated Steam/Temperature Controlled Equipment

Problem: "Stall" Condition on Modulated Steam Control

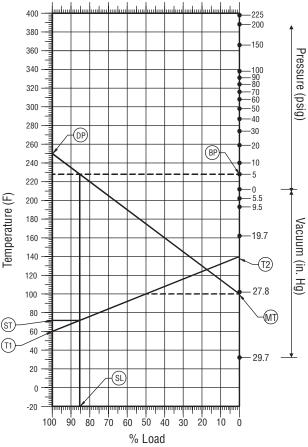
Modulated steam controls are required to change steam pressure in the heat exchanger to control accurate product output temperature. Due to these varying steam pressure changes, a stall condition exists in all heat exchangers where condensate cannot flow through the steam trap due to insufficient pressure differential. Under the stall condition, partial or complete flooding will occur. Reference figure above noting the stall conditions and problems that can occur.


Problems

- Stall condition—no condensate drainage due to insufficient pressure to move condensate through the steam trap
- 2. Heat exchange equipment floods causing equipment damage from:
- Water hammer due to steam and condensate occupying the same space
- Corrosion due to carbonic acid forming from sub-cooled condensate reabsorbing trapped carbon dioxide and noncondensable gases
- 3. Inaccurate temperature control

Stall Chart

Use of the stall chart on right will determine the point where flooding will occur.


Application information required:	Example
DP = design pressure to heat exchanger	15 psig
BP = back pressure	5 psig
T1 = incoming temperature	60°F
T2 = exit temperature	140°F
MT = mean temperature	100°F
Stall Information: SL = stall load % ST = stall load temperature	85% 72°F

Armstrong Solution

The Armstrong pump trap and steam trap combination is the total solution to the stall condition by removing condensate under all system conditions. When the steam system pressure is sufficient to overcome the back pressure, the steam trap operates normally. When the system pressure falls to the stall condition, the pump trap operates and pumps condensate through the steam trap. Temperature control and condensate drainage are assured under all system conditions.

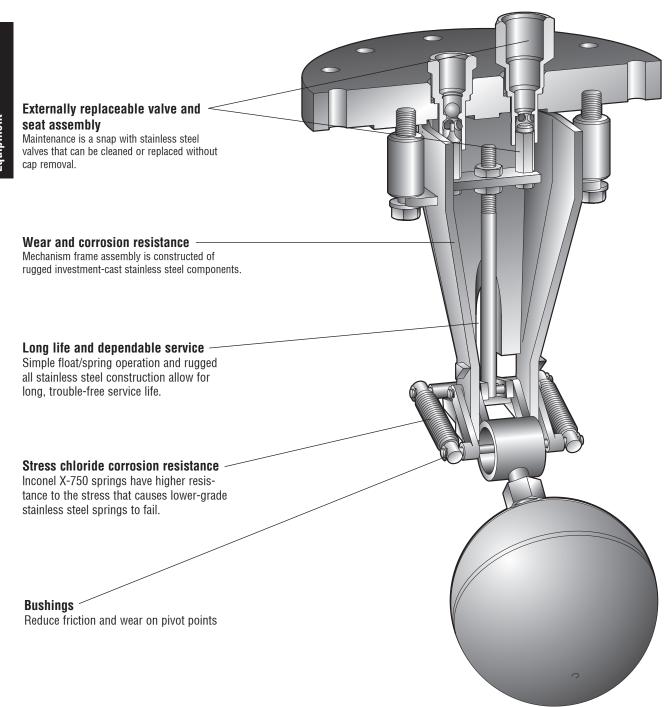
NOTE: The pump trap is sized for the stall conditions. **NOTE:** Closed-loop solution shown. See page 234 for vented system arrangement.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

237

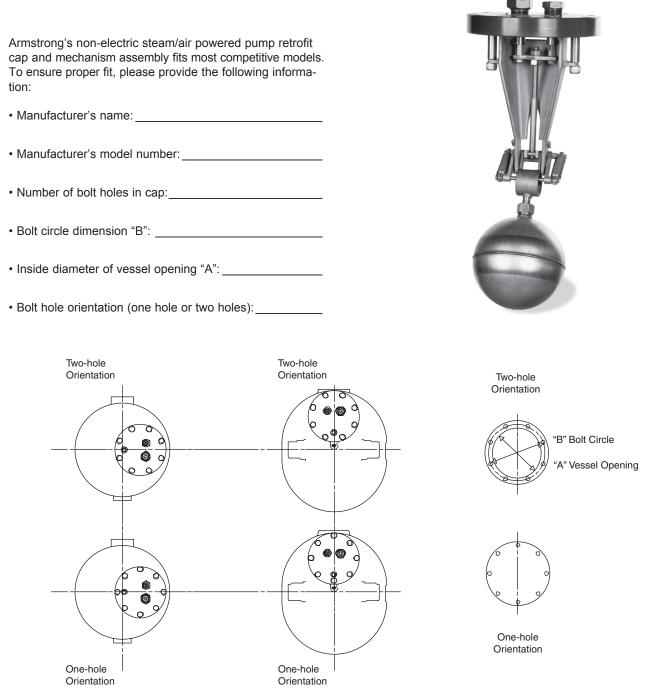
Armstrong[®] Rescue Cap[®] Non-Electric Steam/Air Powered Pump Retrofit Assembly

Stort No Fail March 3-Year No Fail The Tran Medition


Do you experience maintenance problems with non-electric steam/air powered pumps?

maintenance?

Are you dumping valuable condensate because of frequent


Do you experience spring failures?

Do you have to remove the complete cap assembly to view, clean or replace the motive or vent valve?

Rescue Cap® Non-Electric Steam/Air Powered Pump Retrofit Assembly

Illustration			Fits Competitors'	Mechanical Pum	ps Listed Below		
	Spirax Sarco Models PTC & PTF PPC & PPF	Watson McDaniel Models PMPC & PMP	Spence & Nicholson Condensate Commanders	KADANT Johnson Corporation	ITT Hoffman PCS	Yarway Series 65 Steel	Clark Reliance

quipment

Armstrong[®] FHC / FHS Series Electric Condensate Pumps

Armstrong FHC (cast iron) and FHS (steel) electric condensate pumps are offered as packaged units, pre-assembled, wired and factory tested.

Features

- Heavy duty, ballbearing, close-coupled pump motors with stainless steel shaft. 3450 RPM for greater efficiency and more economical operation.
- Level controls with two-pole, drip proof case, stainless steel float and float rod, doublebreak silver-to-silver contacts. Float travel adjustment is easy, visible and accessible.
- Pump mounting design provides efficient operation and extended life by venting air and flushing seal area.
- Offers a wide range of pressures and GPM. Unique design for easy maintenance.
- Pumps made of durable cast iron for extended life; efficient design provides maximum capacity with minimum motor load.
- The ultimate in ceramic technology for extended life. The seal runs on the brass impeller hub with the motor shaft actually outside the pump body. Therefore, the shaft is not exposed to corrosion by condensate. Recommended for temperatures up to 250°F (120°C).

For control panel information and optional items, please refer to page 258.

Please visit our web site, **armstrong**internationl.com, for detail information regarding dimensions and weights.

For a fully detailed certified drawing, refer to:

i oi a iany	aotanoa oortinot	a araming, roror	
FHC-112	CDF1092	FHS-4028G	CD2243
FHC-122	CDF1093	FHS-112	CDF1089
FHC-212	CD2244	FHS-122	CD2241
FHC-222	CDF1095	FHS-212	CD2242
		FHS-222	CDF1091
		FHS-230	CDF1091

Specifications	- FHC Cast Iron	Receiver Co	ondensate Pumps					
Mode	el No.	Pump	Standard	Maximum Pump	Pump Discharge	Pump	Receiver Size	sq ft
Simplex	Duplex	GPM	Motor Voltage*	Discharge, psig	Nozzle Size	HP	Gallons	EDR
FHC-112	FHC-212	12	115V/1Ph	00	0/4"	1/3	15	8,000
FHC-122	FHC-222	22	3500 RPM	20	3/4"	1/2	24	15,000

Specifications	- FHS Carbon S	teel Receive	er Condensate Pumps					
Mode	el No.	Pump	Standard	Maximum Pump	Pump Discharge	Pump	Receiver Size Gallons	sq ft
Simplex	Duplex	GPM	Motor Voltage*	Discharge, psig	Nozzle Size	HP		EDR
FHS-4028G	—	10				1/0	8	8,000
FHS-112	FHS-212	12	115V/1Ph	00	0 (4 "	1/3	15	
FHS-122	FHS-222	22	3500 RPM	20	3/4"	1/2	00	15,000
_	FHS-230	30				3/4	30	20,000

*Can be field wired to 230V/1Ph/60Hz

Additional units for larger capacities and higher pressures available upon request.

Pumps have cast iron bodies.

Sizing Condensate Pumps

Step 1—Determine the condensing rate of the system:

- Where: C = Condensing Rate in lb/hr F_1 = Conversion to GPM = 500 F_2 = Conversion to EDR = .0005
- Formula: $C \div F_1 = GPM$ $GPM \div F_2 = sq. \text{ ft. EDR}$
- Example: 2000 lb/hr ÷ 500 = 4 GPM 4 GPM ÷ 0.0005 = 8,000 sq. ft. EDR

Step 2—Apply a 3:1 safety factor by multiplying by 3

Example: 4 GPM x safety factor of 3 = 12 GPM Select a pump with a 12 GPM rating with a sq. ft. EDR of 8,000

Step 3—Determine system back pressure

The total back pressure is determined by vertical lift, system pressure on the discharge side of the pump, plus frictional loss through pipe, valves and fittings.

Vertical lift, 2.31 ft. = 1 psig + system pressure (psig) + frictional loss (psig) = total system back pressure.

Select a pump that has a maximum discharge pressure greater than the total system back pressure calculated for the system.

Special Notes:

- Floor mounted condensate receivers have a maximum operating temperature rating of 200°F. Higher temperature applications will require that the receiver be elevated to achieve proper net positive suction head (NPSH).
- Duplex units are typically sized for system redundancy, using a mechanical alternator for less wear on each pump.
- For systems that require vacuum pumps, control panels, high performance motors and special condensate receivers, consult the factory for engineering and pricing assistance.
- Condensate receivers are typically sized for one to three minutes of storage capacity.
- The condensate receiver that is mounted to the pump must always remain vented to the atmosphere.

NPSH is critical to the proper operation of an electric condensate pump. NPSH is the measure of how close the suction passage of the pump is to boiling. NPSH can be calculated by the following formula: NPSH = $H_{s} + H_{p} - H_{v} - H_{f}$

Where:

 H_s = static head of the liquid at the pump suction

- H_v = vapor pressure of the liquid at the pump suction
- H_p = absolute pressure above the static head of the liquid H_f = friction loss in the suction piping

Armstrong[®] Sizing for Electric Condensate Package

	erson:			ve:
ustor	ner:		Customer Lo	cation:
	Pump GPM require	d* (with 3:1 safety fac	ctor)	
	Determine pump di	scharge:		
	Friction loss of	of pipe		
	Vertical lift			
	If pumping in	to a pressurized line (add pressure of line)
	Add 5 psi saf	ety factor		
	Total psi			
	Standard packages	rated to pump up to 2	200°F condensate	
	Temperature	of condensate		
	Motor voltage and p	bhase		
	Material of receiver	□ Steel	Cast Iron	Stainless Steel
	Motor enclosure:	DDP	TEFC*	Explosion Proof*
	ls a control panel n	eeded: 🛛 🖵 Yes	🗖 No	
	NEMA rating:	DINEMA 12	□ NEMA 4*	
	Type of alternator o	n a duplex: 🛛 🗖 Me	chanical 🛛 🖵 Ele	ctric
nd	ensate Return S	hedule		
iiu		,iicuuic		
	Capacity		PSIG	
			RPM	
	Receiver	gallons		
	Current	phase, 60 cycle		lts

*It is acceptable to use a 2:1 safety factor if the actual loads are known. If actual load is unknown, use standard 3:1 safety factor.

4100/4200/4300/5000/3500 Series Condensate Boiler Feed Pumps

Series 4100 Condensate and Boiler Feed

- Heavy gauge 3/16" steel receivers for long service life
- 3450 rpm motors for maximum efficiency with minimum horsepower
- Simplex/duplex
- Wide range of options available
- Standard Units: 3 gpm 75 gpm
- Consult factory for additional sizes

Series 4200 Condensate and Boiler Feed

- Heavy duty cast iron receivers for long service life
 3450 rpm motors for maximum efficiency with minimum
- horsepower - Simplex/duplex
- Wide range of options available
- Standard Units: 3 gpm 75 gpm
- Consult factory for additional sizes

Series 4300 Condensate and Boiler Feed

- Heavy gauge 3/16" stainless steel receivers for long service life
- 3450 rpm motors for maximum efficiency with minimum
- horsepower
- Simplex/duplex
- Wide range of options available
- Standard Units: 3 gpm 75 gpm
- Consult factory for additional sizes

Series 5000 Boiler Feed

- Heavy gauge 3/16" carbon steel cylindrical receivers (stainless steel available)
- 3450 rpm motors for maximum efficiency with minimum horsepower
- Simplex/duplex (other)
- Wide range of options available
- Standard Units: 25 gpm 100 gpm
- Consult factory for additional sizes

Series 3500 Condensate and Boiler Feed

- Heavy gauge 3/16" carbon steel cylindrical receivers (stainless steel available)
- 3450 rpm motors for maximum efficiency with minimum horsepower
- Simplex/duplex
- Wide range of options available
- Standard Units: 3 gpm 140 gpm
- Consult factory for additional sizes

strong[®] Carbon Steel Receiver Electric Pump Packages

AFH-4100	Series								·	÷
Cap Sq. Ft. EDR	Discharge Pressure PSIG	Pump Cap. G.P.M.	HP 3500 R.P.M.	Rec. Cap Gal.	Unit Model No. Simplex	Unit Model No. Duplex	Weight (lb) Simplex	Weight (lb) Duplex	Disch. Size In.	Inlet Size In.
8,000	20	12		8	AFH-4028-G	—	90			
2,000		3			AFH-4122-G	AFH-4122-GDA				
4,000		6	1/3	15	AFH-4124-G	AFH-4124-GDA	125	185		2"
6,000]	9		15	AFH-4126-G	AFH-4126-GDA	120	COL	3/4"	
8,000		12			AFH-4128-G	AFH-4128-GDA			3/4	
10,000		15	1/2		AFH-41210-G	AFH-41210-GDA	190	240		
15,000	20	22.5	1/2	30	AFH-41215-G	AFH-41215-GDA	190	240		2-1/2"
20,000		30	3/4		AFH-41220-G	AFH-41220-GDA	200	250		
25,000]	37.5	3/4	45	AFH-41225-J	AFH-41225-JDA	285	350		
30,000]	45	1	40	AFH-41230-J	AFH-41230-JDA	200	350		2-1/2"
40,000]	60	1-1/2	60	AFH-41240-J	AFH-41240-JDA	335	405]	2-1/2
50,000]	75	2	95	AFH-41250-J	AFH-41250-JDA	385	460]	
2,000		3			AFH-4132-J	AFH-4132-JDA]	
4,000]	6	1/0		AFH-4134-J	AFH-4134-JDA	100	050		
6,000]	9	1/2	15	AFH-4136-J	AFH-4136-JDA	180	250		2"
8,000]	12			AFH-4138-J	AFH-4138-JDA				
10,000]	15	3/4	1	AFH-41310-J	AFH-41310-JDA	185	255		
15,000	30	22.5			AFH-41315-J	AFH-41315-JDA	000	000		
20,000]	30	1	30	AFH-41320-J	AFH-41320-JDA	230	300		
25,000	1	37.5		45	AFH-41325-J	AFH-41325-JDA	285	350		0.1/01
30,000	1	45	1-1/2	45	AFH-41330-J	AFH-41330-JDA	290	355		2-1/2"
40,000	1	60	2	60	AFH-41340-J	AFH-41340-JDA	340	410		
50,000	1	75	3	95	AFH-41350-J	AFH-41350-JDA	395	470		
2,000		3			AFH-4142-J	AFH-4142-JDA				
4,000	1	6			AFH-4144-J	AFH-4144-JDA				
6,000	1	9	1	15	AFH-4146-J	AFH-4146-JDA	190	270		2"
8,000	1	12			AFH-4148-J	AFH-4148-JDA			1-1/2"	
10,000	1	15			AFH-41410-J	AFH-41410-JDA				
15,000	40	22.5			AFH41415-J	AFH-41415-JDA	0.40			
20,000	1	30	1-1/2	30	AFH-41420-J	AFH-41420-JDA	240	310		
25,000	1	37.5			AFH-41425-J	AFH-41425-JDA	290	355		
30,000	1	45	0	45	AFH-41430-J	AFH-41430-JDA	295	360		2-1/2"
40,000	1	60	2	60	AFH-41440-J	AFH-41440-JDA	340	410		
50,000	1	75	3	95	AFH-41450-J	AFH-41450-JDA	395	470		
2,000		3			AFH-4152-J	AFH-4152-JDA				
4,000	1	6			AFH-4154-J	AFH-4154-JDA				
6,000	1	9		15	AFH-4156-J	4156-JDA	195	275		2"
8,000	1	12	2		AFH-4158-J	4158-JDA				
10,000	1	15			AFH-41510-J	41510-JDA				
15,000	50	22.5			AFH-41515-J	41515-JDA	245	320	1	
20,000	1	30		30	AFH-41520-J	41520-JDA	255	330	1	
25,000	1	37.5	3		AFH-41525-J	41525-JDA			1	
30,000	1	45		45	AFH-41530-J	41530-JDA	305	385		2-1/2"
40,000	1	60		60	AFH-41540-J	41540-JDA	370	500	1	
50,000	1	75	5	95	AFH-41550-J	41550-JDA	430	560	1	

Note: When ordering units, specify sq. ft. capacity, discharge pressure, G.P.M. model number and motor voltage. Higher G.P.M. and discharge pressure available upon request. 2 ft NPSH units available for 200°F - 212°F condensate.

Models with higher capacities or discharge pressures available upon request.

Contact Armstrong or your local Armstrong representative for submittal drawings and specifications.

Pumps have cast iron bodies.

Cast Iron Receiver Electric Pump Packages

Condensate Recovery Equipment

AFH-4200) Series									
Cap Sq. Ft. EDR	Discharge Pressure PSIG	Pump Cap. G.P.M.	HP 3500 R.P.M.	Rec. Cap Gal.	Unit Model No. Simplex	Unit Model No. Duplex	Weight (lb) Simplex	Weight (lb) Duplex	Disch. Size Inches	Inlet Siz Inches
2,000		3		_	AFH-4222-G	_	450	—		
4,000		6	10	6	AFH-4224-G		150			
6,000	1	9	1/3		AFH-4226-G	AFH-4226-GDA				0
8,000	1	12		15	AFH-4228-G	AFH-4228-GDA	260	295	3/4"	2"
10,000	1	15	1/0		AFH-42210-G	AFH-42210-GDA	1			
15,000	20	22.5	1/2	24	AFH-42215-G	AFH-42215-GDA	300	335		
20,000	1	30	0/4		AFH-42220-G	AFH-42220-GDA	410	445		
25,000	1	37.5	3/4	36	AFH-42225-J	AFH-42225-JDA	350	420		1
30,000	1	45	1		AFH-42230-J	AFH-42230-JDA	355	430		3"
40,000		60	1-1/2		AFH-42240-J	AFH-42240-JDA	420	500		
50,000		75	2	50	AFH-42250-J	AFH-42250-JDA	425	510		
2,000		3			AFH-4232-J	_				
4,000	1	6	1	6	AFH-4234-J	_	165	_		
6,000	1	9	1/2		AFH-4236-J	AFH-4236-JDA	_	_		
8,000	-	12		15	AFH-4238-J	AFH-4238-JDA	295	360		2"
10,000	-	15	3/4		AFH-42310-J	AFH-42310-JDA	300	365		
15,000	30	22.5		24	AFH-42315-J	AFH-42315-JDA	305	380		
20,000	-	30	1		AFH-42320-J	AFH-42320-JDA				
25,000	-	37.5		36	AFH-42325-J	AFH-42325-JDA	- 355	430		
30,000	-	45	1-1/2		AFH-42330-J	AFH-42330-JDA	360	440		3"
40,000		60	2		AFH-42340-J	AFH-42340-JDA	425	510		
50,000	-	75	3	50	AFH-42350-J	AFH-42350-JDA	435	525		
2,000		3			AFH-4242-J		100	020		
4,000	-			6	AFH-4244-J		170			
6,000	-	6 9	1		AFH-4246-J	AFH-4246-JDA				-
8,000	-	12		15	AFH-4248-J	AFH-4248-JDA	295	360	1-1/2"	2"
10,000	-	15		10	AFH-42410-J	AFH-42410-JDA		000	1 1/2	
15,000	40	22.5		24	AFH-42415-J	AFH-42415-JDA	310	390		
20,000		30	1-1/2		AFH-42420-J	AFH-42420-JDA	010	000		
25,000	-	37.5		36	AFH-42425-J	AFH-42425-JDA	360	440		
30,000	-	45			AFH-42430-J	AFH-42430-JDA	365	450		3"
40,000		60	2		AFH-42440-J	AFH-42440-JDA	425	510		5
50,000	-	75	3	50	AFTI-42440-J AFH-42450-J	AFH-42440-JDA AFH-42450-JDA	425	525		
2,000		3	3		AFH-42450-J AFH-4252-J	AFIT-42450-JDA	400	JZU		
,	-			6	AFH-4252-J AFH-4254-J		175	_		
4,000	-	6								
6,000	-	9	2	15	AFH-4256-J	AFH-4256-JDA	215	205		2"
8,000	-	12		15	AFH-4258-J	AFH-4258-JDA	315	395		
10,000		15		0.4	AFH-42510-J	AFH-42510-JDA	000	445		
15,000	50	22.5		24	AFH-42515-J	AFH-42515-JDA	330	415		
20,000	-	30			AFH-42520-J	AFH-42520-JDA				
25,000	-	37.5	3	36	AFH-42525-J	AFH-42525-JDA	370	460		
30,000		45			AFH-42530-J	AFH-42530-JDA				3"
40,000		60	5	50	AFH-42540-J	AFH-42540-JDA	445	535		
50,000		75	-		AFH-42550-J	AFH-42550-JDA				1

Note: When ordering units, specify sq. ft. capacity, discharge pressure, G.P.M. model number and motor voltage. Higher G.P.M. and discharge pressure available upon request. 2 ft NPSH units available for 200°F - 212°F condensate.

Models with higher capacities or discharge pressures available upon request.

Contact Armstrong or your local Armstrong representative for submittal drawings and specifications.

Pumps have cast iron bodies.

ng Stainless Steel Receiver Electric Pump Packages

AFH-4300	Series Stainless	s Steel Elect	ric Conde	nsate Pum	p Packages					
Cap Sq. Ft. EDR	Discharge Pressure PSIG	Pump Cap. G.P.M.	HP 3500 R.P.M.	Rec. Cap Gal.	Unit Model No. Simplex	Unit Model No. Duplex	Weight (lb) Simplex	Weight (lb) Duplex	Disch. Size Inches	Inlet Size Inches
8,000		12		8	AFH-4028-GS	—	90	—		
2,000	1	3	1		AFH-4322-G	AFH-4322-GDA]	
4,000]	6	1/3	15	AFH-4324-G	AFH-4324-GDA	105	105		2"
6,000]	9		15	AFH-4326-G	AFH-4326-GDA	125	185	0.(4"	
8,000]	12]		AFH-4328-G	AFH-4328-GDA]		3/4"	
10,000	20	15	1/0		AFH-43210-G	AFH-43210-GDA	100	240		
15,000	20	22.5	1/2	30	AFH-43215-G	AFH-43215-GDA	- 190	240		
20,000]	30	2/4		AFH-43220-G	AFH-43220-GDA	200	250		
25,000]	37.5	3/4	45	AFH-43225-J	AFH-43225-JDA	005	050		2-1/2"
30,000		45	1	45	AFH-43230-J	AFH-43230-JDA	285	350		
40,000]	60	1-1/2	60	AFH-43240-J	AFH-43240-JDA	335	405		
50,000	1	75	2	95	AFH-43250-J	AFH-43250-JDA	385	460		
2,000		3			AFH-4332-J	AFH-4332-JDA				
4,000	1	6			AFH-4334-J	AFH-4334-JDA	1 400	050		
6,000	1	9	1/2	15	AFH-4336-J	AFH-4336-JDA	180	250		2"
8,000	1	12	1		AFH-4338-J	AFH-4338-JDA				
10,000	1	15	3/4		AFH-43310-J	AFH-43310-JDA	185	255		
15,000	30	22.5			AFH-43315-J	AFH-43315-JDA				
20,000	1	30	1	30	AFH-43320-J	AFH-43320-JDA	230	300		
25,000	1	37.5	ĺ		AFH-43325-J	AFH-43325-JDA	285	350		
30,000	1	45	1-1/2	45	AFH-43330-J	AFH-43330-JDA	290	355		2-1/2"
40,000	1	60	2	60	AFH-43340-J	AFH-43340-JDA	340	410		
50,000	1	75	3	95	AFH-43350-J	AFH-43350-JDA	395	470		
2,000		3			AFH-4342-J	AFH-4342-JDA				
4,000	1	6			AFH-4344-J	AFH-4344-JDA				
6,000	1	9	1	15	AFH-4346-J	AFH-4346-JDA	190	270		2"
8,000		12			AFH-4348-J	AFH-4348-JDA	1		1-1/2"	
10,000	1	15			AFH-43410-J	AFH-43410-JDA				
15,000	40	22.5			AFH43415-J	AFH-43415-JDA				
20,000	1	30	1-1/2	30	AFH-43420-J	AFH-43420-JDA	240	310		
25,000		37.5			AFH-43425-J	AFH-43425-JDA	290	355		
30,000	1	45	_	45	AFH-43430-J	AFH-43430-JDA	295	360		2-1/2"
40,000	1	60	2	60	AFH-43440-J	AFH-43440-JDA	340	410		
50,000	1	75	3	95	AFH-43450-J	AFH-43450-JDA	395	470		
2,000		3			AFH-4352-J	AFH-4352-JDA				
4,000	1	6	1		AFH-4354-J	AFH-4354-JDA	1			
6,000	1	9		15	AFH-4356-J	4356-JDA	195	275		2"
8,000	1	12	2		AFH-4358-J	4358-JDA				
10,000	1	15	1		AFH-43510-J	43510-JDA	1			
15,000	50	22.5	1		AFH-43515-J	43515-JDA	245	320		
20,000	1	30		30	AFH-43520-J	43520-JDA	255	330	1	
25,000	1	37.5	3		AFH-43525-J	43525-JDA			1	
30,000	1	45		45	AFH-43530-J	43530-JDA	- 305	385		2-1/2"
40,000	1	60		60	AFH-43540-J	43540-JDA	370	500		
50,000	1	75	5	95	AFH-43550-J	43550-JDA	430	560	1	

Note: When ordering units, specify sq. ft. capacity, discharge pressure, G.P.M. model number and motor voltage. Higher G.P.M. and discharge pressure available upon request. 2 ft NPSH units available for 200°F - 212°F condensate.

Models with higher capacities or discharge pressures available upon request.

Contact Armstrong or your local Armstrong representative for submittal drawings and specifications.

Pumps have cast iron bodies.

Sizing for Boiler Feed Package

This sheet MUST be sent in with every order.

Date:	Representative:
Salesperson:	Application:
Customer:	Customer Location:
Number of boilers the pump is feeding	(need a minimum of one dedicated pump per boiler)
Capacity of each boiler (BHP):	
BTU/HR / 33,475 = BHP	
GPM / 0.069 = BHP	
LBS/HR / 34.5 = BHP	
Determine pump discharge:	
Operating pressure of boiler	
Friction loss of pipe between pump ar	nd boiler (psi)
Lift from pump to boiler (psi)	(2.31' lift = 1 psi)
Add 5 psi safety factor	
Total (psi)	
Standard packages rated to pump up to 200	°F condensate
Temperature of condensate	
Motor voltage and phase	
Material of receiver: GammaSteel	Cast Iron Stainless Steel
Motor enclosure:	□TEFC*
Is a control panel needed: \Box Yes	□No
NEMA rating: DNEMA 12	□NEMA 4*
Is there a need for pre-heat tube to heat the	feed water in the tank? \Box Yes \Box No
If so, up to what temperature?	
What is the maximum inlet pressure of the r	make-up water to the tank?
Need to use a solenoid maek-up water	r valve if over 45 psi.
Boiler Feed Schedule	
Model Number	
Capacity GPM at	PSIG
HP	RPM
Receiver gallons	
Current phase, 60 cycles,	volts
Options included on package:	

Carbon Steel Receiver Boiler Feed Packages

Boiler H.P.	Discharge Pressure PSIG	Pump Cap. G.P.M.	Motor H.P.	Rec. Cap Gal.	Unit Model No. Simplex	Unit Model No. Duplex	Weight (lb) Simplex	Weight (lb) Duplex	Disch. Size In.	Inlet Size In.
	20		1/3		AFH-4122-GF	AFH-4122-GDF	200	240		3/4"
45	30		1/2	1 1	AFH-4132-JF	AFH-4132-JDF	260	300		
15	40	3	1		AFH-4142-JF	AFH-4142-JDF	265	310		1-1/2
	50		2	30	AFH-4152-JF	AFH-4152-JDF	275	330		
	20		1/3	30	AFH-4124-GF	AFH-4124-GDF	200	240		3/4"
00	30		1/2	1	AFH-4134-JF	AFH-4134-JDF	260	300		
30	40	6	1	1 1	AFH-4144-JF	AFH-4144-JDF	265	310		1-1/2
	50		2		AFH-4154-JF	AFH-4154-JDF	275	330		
	20		1/3		AFH-4126-GF	AFH-4126-GDF	240	280		3/4"
45	30	9	1/2	45	AFH-4136-JF	AFH-4136-JDF	300	340		
45	40	9	1	45	AFH-4146-JF	AFH-4146-JDF	305	350		1-1/2
	50	1	2] [AFH-4156-JF	AFH-4156-JDF	315	370		
	20		1/3		AFH-4128-GF	AFH-4128-GDF	275	335		3/4'
<u> </u>	30	10	1/2		AFH-4138-JF	AFH-4138-JDF	335	395	0.1/0"	
60	40	12	1	60	AFH-4148-JF	AFH-4148-JDF	340	405	2-1/2"	1-1/2
	50		2		AFH-4158-JF	AFH-4158-JDF	350	425		
	20		1/2		AFH-41210-GF	AFH-41210-GDF	360	420		3/4'
75	30	15	3/4		AFH-41310-JF	AFH-41310-JDF	420	480		
75	40	15	1		AFH-41410-JF	AFH-41410-JDF	425	490		1-1/2
	50	1	2	95	AFH-41510-JF	AFH-41510-JDF	435	510		
	20		1/2	90	AFH-41215-GF	AFH-41215-GDF	360	420		3/4'
100	30	20	1] [AFH-41315-JF	AFH-41315-JDF	420	480		
100	40	20	1-1/2] [AFH-41415-JF	AFH-41415-JDF	425	490		1-1/2
	50		2		AFH-41515-JF	AFH-41515-JDF	435	510		
	20		3/4		AFH-41220-GF	AFH-41220-GDF	415	475		3/4'
150	30	30	1	120	AFH-41320-JF	AFH-41320-JDF	475	535		
100	40	30	1-1/2	120	AFH-41420-JF	AFH-41420-JDF	480	545		1-1/2
	50		3		AFH-41520-JF	AFH-41520-JDF	490	565		

Note: All boiler feed units supplied with Armstrong make-up water valve (rated to 45 psi maximum inlet pressure) and gauge glass; solenoid make-up valve available. Models with higher capacities or discharge pressures available upon request.

Pumps have cast iron bodies.

Condensate Recovery Equipment

Cast Iron Receiver Boiler Feed Packages

Boiler H.P.	Discharge Pressure PSIG	Pump Cap. G.P.M.	Motor H.P.	Rec. Cap Gal.	Unit Model No. Simplex	Unit Model No. Duplex	Weight (lb) Simplex	Weight (lb) Duplex	Disch. Size In.	Inlet Size In	
	20		1/3		AFH-4222-GF	AFH-4222-GDF	465	500		3/4"	
15	30	3	1/2]	AFH-4232-JF	AFH-4232-JDF	505	580			
10	40	3	1]	AFH-4242-JF	AFH-4242-JDF	510	590		1-1/2"	
	50		2	36	AFH-4252-JF	AFH-4252-JDF	520	600			
	20		1/3	30	AFH-4224-GF	AFH-4224-GDF	465	500		3/4"	
20	30		1/2] [AFH-4234-JF	AFH-4234-JDF	505	580			
30	40	6	1] [AFH-4244-JF	AFH-4244-JDF	510	590		1-1/2"	
	50		2] [AFH-4254-JF	AFH-4254-JDF	520	600	3"		
	20		1/3		AFH-4226-GF	AFH-4226-GDF	575	610	3	3/4"	
45	30		9 1/2	0 1/2]	AFH-4236-JF	AFH-4236-JDF	615	690		
45	40	9	1]	AFH-4246-JF	AFH-4246-JDF	620	700		1-1/2"	
	50		2	50	AFH-4256-JF	AFH-4256-JDF	625	710			
	20		1/3	- 50	AFH-4228-GF	AFH-4228-GDF	575	610		3/4"	
60	30	12	1/2]	AFH-4238-JF	AFH-4238-JDF	615	690			
00	40	12	1] [AFH-4248-JF	AFH-4248-JDF	620	700		1-1/2"	
	50		2] [AFH-4258-JF	AFH-4258-JDF	625	710			
	20		1/2		AFH-42210-GF	AFH-42210-GDF	785	820		3/4"	
75	30	15	3/4	75	AFH-42310-JF	AFH-42310-JDF	825	900			
75	40	15	1	/5	AFH-42410-JF	AFH-42410-JDF	830	910		1-1/2"	
	50		2	1	AFH-42510-JF	AFH-42510-JDF	835	920			
	20		1/2		AFH-42215-GF	AFH-42215-GDF	1043	1078		3/4"	
100	30	20	1]	AFH-42315-JF	AFH-42315-JDF	1085	1160	A 11		
100	40	20	1-1/2]	AFH-42415-JF	AFH-42415-JDF	1095	1180	4"	1-1/2"	
	50		2	120	AFH-42515-JF	AFH-42515-JDF	1100	1200			
	20		3/4	120	AFH-42220-GF	AFH-42220-GDF	1043	1078		3/4"	
150	30	20	1]	AFH-42320-JF	AFH-42320-JDF	1085	1160			
150	40	30	1-1/2		AFH-42420-JF	AFH-42420-JDF	1095	1180		1-1/2"	
	50		3		AFH-42520-JF	AFH-42520-JDF	1110	1220			

Note: All boiler feed units supplied with Armstrong make-up water valve (rated to 45 psi maximum inlet pressure) and gauge glass; solenoid make-up valve available. Models with higher capacities or discharge pressures available upon request. Pumps have cast iron bodies.

Armstrong

strong[®] Stainless Steel Receiver Boiler Feed Packages

Boiler H.P.	Discharge Pressure PSIG	Pump Cap. G.P.M.	Motor H.P.	Rec. Cap Gal.	Unit Model No. Simplex	Unit Model No. Duplex	Weight (lb) Simplex	Weight (lb) Duplex	Disch. Size In.	Inlet Size In.
	20		1/3	dun	AFH-4322-GF	AFH-4322-GDF	200	240		3/4"
	30		1/2		AFH-4332-JF	AFH-4332-JDF	260	300	1	0,1
15	40	3	1	1	AFH-4342-JF	AFH-4342-JDF	265	310	-	1-1/2"
	50		2	-	AFH-4352-JF	AFH-4352-JDF	275	330	-	
	20		1/3	30	AFH-4224-GF	AFH-4224-GDF	200	240	1	3/4"
	30	_	1/2		AFH-4334-JF	AFH-4334-JDF	260	300	1	
30	40	6	1		AFH-4344-JF	AFH-4344-JDF	265	310		1-1/2"
	50		2		AFH-4354-JF	AFH-4354-JDF	275	330	1	
	20		1/3		AFH-4326-GF	AFH-4326-GDF	240	280	1	3/4"
	30		1/2	1	AFH-4336-JF	AFH-4336-JDF	300	340		
45	40	9	1	45	AFH-4346-JF	AFH-4346-JDF	305	350	1	1-1/2"
	50		2	1	AFH-4356-JF	AFH-4356-JDF	315	370	1	
	20		1/3		AFH-4328-GF	AFH-4328-GDF	275	335	- - 2-1/2" -	3/4"
	30		1/2	60	AFH-4338-JF	AFH-4338-JDF	335	395		
60	40	12	1		AFH-4348-JF	AFH-4348-JDF	340	405		1-1/2"
	50		2	1	AFH-4358-JF	AFH-4358-JDF	350	425		
	20		1/2		AFH-43210-GF	AFH-43210-GDF	360	420		3/4"
75	30	45	3/4	1	AFH-43310-JF	AFH-43310-JDF	420	480	1	
75	40	15	1	1	AFH-43410-JF	AFH-43410-JDF	425	490	1	1-1/2"
	50		2	1	AFH-43510-JF	AFH-43510-JDF	435	510	1	
	20		1/2	95	AFH-43215-GF	AFH-43215-GDF	360	420]	3/4"
100	30	00	1		AFH-43315-JF	AFH-43315-JDF	420	480]	
100	40	20	1-1/2]	AFH-43415-JF	AFH-43415-JDF	425	490]	1-1/2"
	50		2		AFH-43515-JF	AFH-43515-JDF	435	510		
	20		3/4		AFH-43220-GF	AFH-43220-GDF	415	475]	3/4"
150	30	20	1	100	AFH-43320-JF	AFH-43320-JDF	475	535]	
150	40	30	1-1/2	120	AFH-43420-JF	AFH-43420-JDF	480	545		1-1/2"
	50		3		AFH-43520-JF	AFH-43520-JDF	490	565		

Note: All boiler feed units supplied with Armstrong make-up water valve (rated to 45 psi maximum inlet pressure) and gauge glass; solenoid make-up valve available. Models with higher capacities or discharge pressures available upon request. Pumps have cast iron bodies.

Cylindrical Carbon Steel Receiver Boiler Feed Packages

Condensate Recovery Equipment

Boiler H.P.	Discharge Pressure PSIG	Pump Cap. G.P.M.	Motor H.P.	Rec. Cap Gal.	Unit Model No. Simplex	Unit Model No. Duplex	Weight (lb) Simplex	Weight (lb) Duplex	Disch. Size In.	Inlet Size In.
150	20	- 25	3/4		AFH-502150-JF	AFH-502150-JDF	570	665	3"	1-1/2"
	30		1	125	AFH-503150-JF	AFH-503150-JDF	590	685		
	40		1-1/2		AFH-504150-JF	AFH-504150-JDF	600	695		
	50		2		AFH-505150-JF	AFH-505150-JDF	615	710		
200	20	- 30	3/4	146	AFH-502200-JF	AFH-502200-JDF	635	690		
	30		1		AFH-503200-JF	AFH-503200-JDF	640	730		
	40		1-1/2		AFH-504200-JF	AFH-504200-JDF	650	750		
	50		2		AFH-505200-JF	AFH-505200-JDF	670	770		
250	20	35	3/4	175	AFH-502250-JF	AFH-502250-JDF	800	870		
	30		1		AFH-503250-JF	AFH-503250-JDF	805	875		
	40		1-1/2		AFH-504250-JF	AFH-504250-JDF	815	885		
	50		2		AFH-505250-JF	AFH-505250-JDF	840	910		
300	20	45	1		AFH-502300-JF	AFH-502300-JDF	830	920		
	30		1-1/2	210	AFH-503300-JF	AFH-503300-JDF	835	930		
	40				AFH-504300-JF	AFH-504300-JDF	840	940		
	50		2		AFH-505300-JF	AFH-505300-JDF	860	980		
400	20	55	1-1/2	250	AFH-502400-JF	AFH-502400-JDF	900	995		
	30				AFH-503400-JF	AFH-503400-JDF	905	1005		
	40		2		AFH-504400-JF	AFH-504400-JDF	920	1020		
	50		5		AFH-505400-JF	AFH-505400-JDF	930	1030		
500	20	70	2	326	AFH-502500-JF	AFH-502500-JDF	975	1070	4"	
	30				AFH-503500-JF	AFH-503500-JDF	980	1075		
	40		3		AFH-504500-JF	AFH-504500-JDF	990	1085		
	50		5		AFH-505500-JF	AFH-505500-JDF	1045	1140		
600	20	85	2	205	AFH-502600-JF	AFH-502600-JDF	1070	1170		
	30		3		AFH-503600-JF	AFH-503600-JDF	1070	1170		
	40		F	395	AFH-504600-JF	AFH-504600-JDF	1090	1190		
	50		5		AFH-505600-JF	AFH-505600-JDF	1090	1190		
700	20	100	2	470	AFH-502700-JF	AFH-502700-JDF	1235	1335		
	30		5		AFH-503700-JF	AFH-503700-JDF	1245	1345		
	40				AFH-504700-JF	AFH-504700-JDF	1245	1345		
	50				AFH-505700-JF	AFH-505700-JDF	1295	1395		

Note: All boiler feed units supplied with Armstrong make-up water valve (rated to 45 psi maximum inlet pressure) and gauge glass; solenoid make-up valve available. Models with higher capacities or discharge pressures available upon request. Pumps have cast iron bodies.

Armstrong[®]

Cylindrical Elevated Carbon Steel Receiver Boiler Feed Packages

Boiler	Discharge	Pump Cap.	Motor	Rec. Cap	Unit Model	Unit Model	Weight (lb)	Weight (lb)	Disch.	Inlet
H.P.	Pressure PSIG	G.P.M.	H.P.	Gal.	No. Simplex	No. Duplex	Simplex	Duplex	Size In.	Size I
	20		1/2		AFH-35215-GF	AFH-35215-GDF	265	325	3/4	
15	30	3	1/2	_	AFH-35315-JF	AFH-35315-JDF	285	365	-	
10	40	0	1	_	AFH-35415-JF	AFH-35415-JDF	290	375	1-1/2	
	50		2	- 33	AFH-35515-JF	AFH-35515-JDF	310	415		4
	20		1/2	00	AFH-35230-GF	AFH-35230-GDF	265	325	3/4	
30	30	6		_	AFH-35330-JF	AFH-35330-JDF	285	365		
	40	Ū	1		AFH-35430-JF	AFH-35430-JDF	290	375	1-1/2	
	50		2		AFH-35530-JF	AFH-35530-JDF	310	415		
	20		1/2		AFH-35245-GF	AFH-35245-GDF	350	410	3/4	
45	30	9		- 49	AFH-35345-JF	AFH-35345-JDF	370	450	-	
10	40	0	1	- 10	AFH-35445-JF	AFH-35445-JDF	375	460	1-1/2	
	50		2		AFH-35545-JF	AFH-35545-JDF	395	500		5
	20		1/2		AFH-35260-GF	AFH-35260-GDF	390	450	3/4	
60	30	12		- 65	AFH-35360-JF	AFH-35360-JDF	410	490	-	
00	40	12	1		AFH-35460-JF	AFH-35460-JDF	415	500	1-1/2	
	50		2		AFH-35560-JF	AFH-35560-JDF	435	540		
	20		1/2	_	AFH-35275-GF	AFH-35275-GDF	440	500	3/4	
75	30	15	3/4	_	AFH-35375-JF	AFH-35375-JDF	460	540	-	
10	40	10	1	_	AFH-35475-JF	AFH-35475-JDF	465	550	1-1/2	
	50		2	95	AFH-35575-JF	AFH-35575-JDF	485	590		
	20		1/2		AFH-352100-GF	AFH-352100-GDF	615	675	3/4	
100	30	20	3/4		AFH-353100-JF	AFH-353100-JDF	635	715		
100	40	20	1-1/2	AFH-354100-JF	AFH-354100-JDF	645	735	1-1/2		
	50		2		AFH-355100-JF	AFH-355100-JDF	660	765		
	20		3/4		AFH-352150-GF	AFH-352150-GDF	720	790	3/4	
150	30	30	1	146	AFH-353150-JF	AFH-353150-JDF	740	830		
100	40	50	1-1/2	140	AFH-354150-JF	AFH-354150-JDF	750	850		
	50		3		AFH-355150-JF	AFH-355150-JDF	770	890		
	20		1		AFH-352200-JF	AFH-352200-JDF	930	1020		
200	30	40	1-1/2	210	AFH-353200-JF	AFH-353200-JDF	935	1030		6
200	40	υT	2	210	AFH-354200-JF	AFH-354200-JDF	940	1040		
	50		3		AFH-355200-JF	AFH-355200-JDF	960	1080		
	20		2		AFH-352500-JF	AFH-352500-JDF	1335	1450		
500	30	100	3	470	AFH-353500-JF	AFH-353500-JDF	1340	1460		
000	40	100			AFH-354500-JF	AFH-354500-JDF	1340	1460	1-1/2	
	50		5		AFH-355500-JF	AFH-355500-JDF	1390	1560		
	20		2		AFH-352600-JF	AFH-352600-JDF	1440	1555		
600	30	120	3	- 595	AFH-353600-JF	AFH-353600-JDF	1445	1565		
000	40	120	5	000	AFH-354600-JF	AFH-354600-JDF	1495	1665		
	50		5		AFH-355600-JF	AFH-355600-JDF	1495	1665		
_	20		3		AFH-352700-JF	AFH-352700-JDF	1555	1675		
700	30	140	5	714	AFH-353700-JF	AFH-353700-JDF	1605	1775		
100	40	140	5	/ /14	AFH-354700-JF	AFH-354700-JDF	1605	1775		
	50		7-1/2		AFH-355700-JF	AFH-355700-JDF	1615	1795		

Note: All boiler feed units supplied with Armstrong make-up water valve (rated to 45 psi maximum inlet pressure) and gauge glass; solenoid make-up valve available. Models with higher capacities or discharge pressures available upon request..

Pumps have cast iron bodies.

AFH 4400 Series Stainless Steel Condensate Return Units

High Quality Stainless Steel Exceptional Value, Extraordinary Quality

Armstrong Stainless Steel Condensate Return Units offer the best materials available for long life. Tanks have a 20-year warranty against failure due to corrosion and are made from 304 SS with internal ribbing where needed for excellent strength. Available in six standard sizes; 12, 25, 45, 70, and 100 gallon capacities (with custom sizes available) in simplex or duplex pump configuration. Compact dimensions and light weight make it a simple task to replace your old cast iron unit. System accessories are of the highest quality.

These pumps are made of investment cast 316 stainless steel. The single stage impeller is of semi-open design allowing for occasional pumping of small solids without clogging. Pump is permanently aligned to the electric motor, never requiring alignment at the job site. Pumps are furnished with 250°F mechanical seals, and are equipped with a seal cavity bleed line to keep the seal lubricated and minimize the probability of premature seal failure. Pump discharge openings are NPT.

Standard motors are: three phase- 208/230/460 V TEFC, Single phase -115/208/230 V ODP. Other voltages are available on request. Other motors available are explosion proof, wash down duty, premium efficiency, and any other motor available with a 56C frame.

Motor/pump controls available for simplex, duplex, triplex, and quadplex, in single phase or three phase with a limitless array of available options for any requirement. NEMA 1 is standard enclosure. All other enclosures are available.

Armstrong

AFH 4400 Series Stainless Steel Condensate Return Units

EDR (SQ. FT.)	PSIG	GPM	MOTOR HP	TANK Size	SIMPLEX MODEL Number Three Phase	SIMPLEX MODEL Number Single Phase	DUPLEX MODEL Number Three Phase	DUPLEX MODEI Number Single Phase
	10		1/3		AFH-44S3106	AFH-44S1106	AFH-44D3106	AFH-44D1106
	20		1/3		AFH-44S3206			AFH-44D1206
4000	25	6	1/2		AFH-44S3256	AFH-44S1256	AFH-44D3256	AFH-44D1256
4000	30	0	3/4		AFH-44S3306	AFH-44S1306	AFH-44D3306	AFH-44D1306
	40		1		AFH-44S3406	AFH-44S1406	AFH-44D3406	AFH-44D1406
	50		1-1/2	12	AFH-44S3506	AFH-44S1506	AFH-44D3506	AFH-44D1506
	10		1/3	12	AFH-44S3109	AFH-44S1109	AFH-44D3109	AFH-44D1109
	20	-	1/3		AFH-44S3209	AFH-44S1209	AFH-44D3209	AFH-44D1209
6000	25	9	1/2		AFH-44S3259	AFH-44S1259	AFH-44D3259	AFH-44D1259
0000	30	5	1		AFH-44S3309	AFH-44S1309	AFH-44D3309	AFH-44D1309
	40		1-1/2		AFH-44S3409	AFH-44S1409	AFH-44D3409	AFH-44D1409
	50		1-1/2		AFH-44S3509	AFH-44S1509	AFH-44D3509	AFH-44D1509
	10		1/3		AFH-44S31015	AFH-44S11015	AFH-44D31015	AFH-44D11015
	20		1/2		AFH-44S32015	AFH-44S12015	AFH-44D32015	AFH-44D12015
10000	25	15	1/2		AFH-44S32515	AFH-44S12515	AFH-44D32515	AFH-44D12515
10000	30	10	1		AFH-44S33015	AFH-44S13015	AFH-44D33015	AFH-44D13015
	40		1-1/2		AFH-44S34015	AFH-44S14015	AFH-44D34015	AFH-44D14015
	50		2	25	AFH-44S35015	AFH-44S15015	AFH-44D35015	AFH-44D15015
	10		1/3	20	AFH-44S31022	AFH-44S11022	AFH-44D31022	AFH-44D11022
15000 25 30			1/2		AFH-44S32022	AFH-44S12022	AFH-44D32022	AFH-44D12022
		22.5	1		AFH-44S32522	AFH-44S12522	AFH-44D32522	AFH-44D12522
			1-1/2		AFH-44S33022	AFH-44S13022	AFH-44D33022	AFH-44D13022
	40		2		AFH-44S34022	AFH-44S14022	AFH-44D34022	AFH-44D14022
	50		3		AFH-44S35022		AFH-44D35022	
	10	30	1/3		AFH-44S31030	AFH-44S11030	AFH-44D31030	AFH-44D11030
	20		3/4		AFH-44S32030	AFH-44S12030	AFH-44D32030	AFH-44D12030
20000	25		1		AFH-44S32530	AFH-44S12530	AFH-44D32530	AFH-44D12530
20000	30		1-1/2	AFH-44S33030	AFH-44S13030	AFH-44D33030	AFH-44D13030	
	40		2		AFH-44S34030	AFH-44S14030	AFH-44D34030	AFH-44D14030
	10		1/2		AFH-44S31037	AFH-44S11037	AFH-44D31037	AFH-44D11037
	20		3/4		AFH-44S32037	AFH-44S12037	AFH-44D32037	AFH-44D12037
25000	25	37.5	1-1/2	45	AFH-44S32537	AFH-44S12537	AFH-44D32537	AFH-44D12537
	30		1-1/2		AFH-44S33037	AFH-44S13037	AFH-44D33037	AFH-44D13037
	40		3		AFH-44S34037		AFH-44D34037	
	10		1/2		AFH-44S31045	AFH-44S11045	AFH-44D31045	AFH-44D11045
	20		3/4		AFH-44S32045	AFH-44S12045	AFH-44D32045	AFH-44D12045
00000		45						
30000	25	45	1-1/2		AFH-44S32545	AFH-44S12545	AFH-44D32545	AFH-44D12545
	30		2		AFH-44S33045	AFH-44S13045	AFH-44D33045	AFH-44D11304
	40		3		AFH-44S34045		AFH-44D34045	
	10		3/4		AFH-44S31060	AFH-44S11060	AFH-44D31060	AFH-44D11060
	20		1		AFH-44S32060	AFH-44S12060	AFH-44D32060	AFH-44D12060
40000	25	60	2	-	AFH-44S32560	AFH-44S12560	AFH-44D32560	AFH-44D12560
				70				
	30		2	70	AFH-44S33060	AFH-44S13060	AFH-44D33060	AFH-44D13060
	10		3/4		AFH-44S31070	AFH-44S11070	AFH-44D31070	AFH-44D11070
50000	20	70	1		AFH-44S32070	AFH-44S12070	AFH-44D32070	AFH-44D12070
	25		2		AFH-44S32570	AFH-44S12570	AFH-44D32570	AFH-44D12570
60000	15	90	1	100	AFH-44S31590	AFH-44S11590	AFH-44D31590	AFH-44D11590

Stainless steel tank complete with flange mounted stainless steel pump close coupled to motor of HP shown 115/208-230V/1/60 ODP or

208/230/460v/3/60 3450 RPM TEFC. Simplex unit has NEMA 1 float switch and duplex has NEMA 1 mechanical alternator. Sight Glass is standard. Additional motor options are: Washdown duty and explosion proof.

Additional Accessories: Thermometer, Electrical enclosures, Isolation valves.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Condensate Recovery

Equipment

North America • Latin America • India • Europe / Middle East / Africa • China • Pacific Rim armstronginternational.com

AFH 4400 Series Stainless Steel Condensate Return Unit Accessories (210°F)

All Stainless Steel Electric Condensate Pumps (Simplex) 210°F Capable

AFH-4400 Serie	es All Stainless S	teel Electric Pun	np Packages goo	od to 210° max v	vater temp	
EDR (Sq. Ft.)	PSIG	GPM	Motor HP	Tank Size	Simplex Model Number Three Phase	Simplex Model Number Single Phase
	20		1/2	12	AFH-44S32FT206	AFH-44S12FT206
4000	25	6	1/2		AFH-44S32FT256	AFH-44S12FT256
	30		3/4	1	AFH-44S32FT306	AFH-44S12FT306
	20		1/2	12	AFH-44S32FT209	AFH-44S12FT209
6000	25	9	3/4		AFH-44S32FT259	AFH-44S12FT259
	30		3/4]	AFH-44S32FT309	AFH-44S32FT209 AFH-44S12FT209 AFH-44S32FT259 AFH-44S12FT259
	20		3/4		AFH-44S32FT2015	AFH-44S12FT2015
10000	25	15	1/2	25	AFH-44S32FT2515	AFH-44S12FT2515
	30					
	20		1/2		AFH-44S32FT2022	AFH-44S12FT2022
15000	25	22.5	1/2	25	AFH-44S32FT2522	AFH-44S12FT2522
1	30]		

*Use standard Simplex/Duplex drawings.

All Stainless Steel Electric Condensate Pumps (Duplex) 210°F Capable

AFH-4400 Serie	s All Stainless St	eel Electric Pump) Packages good	to 210° max wat	er temp	
EDR (Sq. Ft.)	PSIG	GPM	Motor HP	Tank Size	Duplex Model Number Three Phase	Duplex Model Number Single Phase
	20		1/2	12	AFH-44D32FT206	AFH-44D12FT206
4000	25	6	1/2		AFH-44D32FT256	AFH-44D12FT256
	30		3/4		AFH-44D32FT306	AFH-44D12FT306
	20		1/2	12	AFH-44D32FT209	AFH-44D12FT209
6000	25	9	3/4		AFH-44D32FT259	AFH-44D12FT259
	30		3/4		AFH-44D32FT309	AFH-44D12FT309
	20		3/4		AFH-44D32FT2015	AFH-44D12FT2015
10000	25	15	1/2	25	AFH-44D32FT2515	AFH-44D12FT2515
	30					
	20		1/2		AFH-44D32FT2022	AFH-44D12FT2022
15000	25	22.5	1/2	25	AFH-44D32FT2522	AFH-44D12FT2522
	30]		

*Use standard Simplex/Duplex drawings.

Condensate Recovery Equipment

Armstrong

Condensate Return Unit Accessories (212°F)

All Stainless Steel Electric Condensate Pumps (Simplex) 212°F Capable

AFH-4400 Serie	es All Stainless S	teel Electric Pun	np Packages goo	od to 212° max v	vater temp	
EDR (Sq. Ft.)	PSIG	GPM	Motor HP	Tank Size	Simplex Model Number Three Phase	Simplex Model Number Single Phase
	20		1/2		AFH-44S32FTE206	AFH-44S12FTE206
4000	25	6	1/2	12	AFH-44S32FTE256	AFH-44S12FTE256
	30	1	3/4	1	AFH-44S32FTE306	AFH-44S12FTE306
	20		1/2	12	AFH-44S32FTE209	AFH-44S12FTE209
6000	25	9	3/4		AFH-44S32FTE259	AFH-44S12FTE259
	30		3/4]	AFH-44S32FTE309	Phase 6 AFH-44S12FTE206 6 AFH-44S12FTE256 6 AFH-44S12FTE206 9 AFH-44S12FTE209 9 AFH-44S12FTE209 9 AFH-44S12FTE209 9 AFH-44S12FTE209 9 AFH-44S12FTE209 15 AFH-44S12FTE2015 15 AFH-44S12FTE2015 15 AFH-44S12FTE2515
	20		3/4		AFH-44S32FTE2015	AFH-44S12FTE2015
10000	25	15	1/2	25	AFH-44S32FTE2515	AFH-44S12FTE2515
	30]	AFH-44S32FTE306 AFH-44S12FTE306 AFH-44S32FTE209 AFH-44S12FTE209 12 AFH-44S32FTE259 AFH-44S12FTE259 12 AFH-44S32FTE259 AFH-44S12FTE259 12 AFH-44S32FTE259 AFH-44S12FTE259 12 AFH-44S32FTE2015 AFH-44S12FTE2019 12 AFH-44S32FTE2015 AFH-44S12FTE2015 12 AFH-44S32FTE2515 AFH-44S12FTE2515 12 AFH-44S32FTE2515 AFH-44S12FTE2515 12 AFH-44S32FTE2022 AFH-44S12FTE2022	
	20		1/2		AFH-44S32FTE2022	AFH-44S12FTE2022
15000	25	22.5	1/2	25	AFH-44S32FTE2522	AFH-44S12FTE2522
	30			1		

AFH 4400 Series Stainless Steel

All Stainless Steel Electric Condensate Pumps (Duplex) 212°F Capable

AFH-4400 Serie	s All Stainless St	eel Electric Pump) Packages good	to 212° max wa	ter temp	
EDR (Sq. Ft.)	PSIG	GPM	Motor HP	Tank Size	Duplex Model Number Three Phase	Duplex Model Number Single Phase
	20		1/2	12	AFH-44D32FTE206	AFH-44D12FTE206
4000	25	6	1/2		AFH-44D32FTE256	AFH-44D12FTE256
	30		3/4		AFH-44D32FTE306	AFH-44D12FTE306
	20		1/2	12	AFH-44D32FTE209	AFH-44D12FTE209
6000	25	9	3/4		AFH-44D32FTE259	AFH-44D12FTE259
	30		3/4		AFH-44D32FTE309	AFH-44D12FTE309
	20		3/4		AFH-44D32FTE2015	AFH-44D12FTE2015
10000	25	15	1/2	25	AFH-44D32FTE2515	AFH-44D12FTE2515
	30					
	20		1/2		AFH-44D32FTE2022	AFH-44D12FTE2022
15000	25	22.5	1/2	25	AFH-44D32FTE2522	AFH-44D12FTE2522
	30					

*Use 212°F Elevated Receiver drawing.

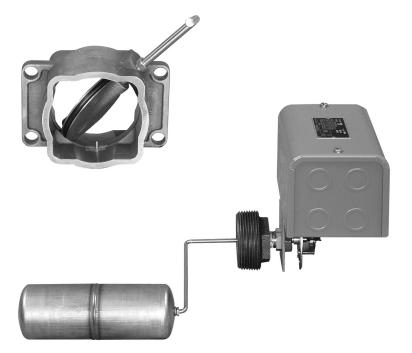
AFH 4400 Series Stainless Steel Condensate Return Unit Accessories

Sight Gauge Assembly

SS bottom fixture with shut-off valve, SS top fixture, 2- heavy duty SS glass guards, and tempered glass tube.

Stainless Steel Butterfly Isolation Valves (Optional)

Butterfly Isolation Valves between pump and receiver are available. These valves are of great value when removing one pump of a duplex system without having to shut the system down.


Float Switches

Float Switches are heavy duty 2 pole with stainless steel rod and float. Duplex alternating float switch includes high level lag pump on feature. Nema 1 standard, Nema 4 and Nema 7/9 are available.

Pressure Gauges (Optional) Not Shown 2 1/2" Liquid Filled SS Casing

Thermometer (Optional) 2 1/2" Diameter face, Bi-metal, 4" stem, Range 32 - 250°F.

4100/4200/4300/3500/5000 Series Electric and Boiler Feed Control Panel and Accessories

Features

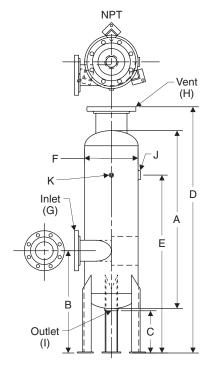

- Motor circuit protector (MCP)
- HOA selector switch
- External reset
- · Control circuit transformer
- Pilot light (pump running)
- Removable mounting plate and thermal strip in a single NEMA 12 enclosure
- · Mounted and wired with single-point power connection
- CE
- CSA
- · UL listed component

Options

- UL certification
- CUL certification
- Pilot light
- Test push button
- Electric alternator
- · Low water cutoff
- Manual transfer switch (boiler feed only)
- · High-level alarm horn and light with silencing switch
- Low-level alarm horn and light with silencing switch
- Remote mounting deduction
- Simplex, triplex, quadruplex pumps
- Explosion proof
- NEMA 4, 4X

Special Options

- · Mechanical and electrical alternators
- Thermometer
- Isolation valves
- Special motor construction
 - TEFC
 - Explosion proof
- 1750 RPM motors
- · Larger pumping capacities
- Higher discharge pressures
- 2' NPSH Rating
- · Water level gauge
- Discharge pressure gauges
- Inlet strainer


Control Panel

Water Level Gauge (optional on most models)

Isolation Valve (optional on most models)

Features

- · ASME coded and stamped vessels
- Standard pressure rating 150 psi (other pressure ratings available upon request)
- Standard models are designed and sized to cover a wide range of applications and loads
- Flash vessels are designed to provide low velocity flash steam with no water carryover
- · Quick payback for flash recovery investment
- Special tanks available upon request

For a fully detailed certified drawing, refer to CDF #1023.

Flash Steam Savings Analysis

Part I: Determining the amount of flash steam produced

A. Condensate Load	A =	lb/hr.
B. Annual hours of operation	B =	hrs/yr.
C. Steam Cost	C =	_\$/1,000 lbs.
D. Flash steam percentage from chart (on page 264)	D =	_ %
E. Flash steam produced:		
D x A = flash steam produced	E =	lb/hr.

Part II: Determining dollar value of the flash steam

F. Annual flash steam savings:

 $\frac{F = E \times B \times C}{1,000}$

Model	AFT-6		AF	AFT-8		-12 AFT-16		-16
No.	in	mm	in	mm	in	mm	in	mm
А	36	914	36	914	40	1,016	48	1,219
В	21	533	21	533	23	584	26	660
С	9-1/2	241	9-1/2	241	9-1/2	241	9-1/2	241
D	51	1,295	52	1,321	55-3/8	1,407	63-1/2	1,613
Е	36	914	36	914	40	1,016	48	1,219
F	6	150	8	203	12	305	16	406
G	2	50	3	80	4	102	6	150
Н	2-1/2	65	4	102	6	150	6	150
Ι	1-1/2	40	1-1/2	40	2	50	2	50
J	3/4	20	1	25	1-1/2	40	2	50
K	1/2	15	1/2	15	1/2	15	1/2	15

NOTE: Connections "G" and "H" are 150 lb. flanges. All others are NPT. All flash tanks are ASME coded for 150 psig (10 bar). Special sizes available upon request.

Capacities	Capacities—Standard Design Model VAFT									
Model	Maximum Cor	idensate Load	Maximum Flash Load							
No.	lb/hr	kg/hr	lb/hr	kg/hr						
AFT-6	2,000	907	500	227						
AFT-8	5,000	2,268	1,000	454						
AFT-12	10,000	4,536	2,000	907						
AFT-16	20,000	9,072	3,000	1,361						

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

F = _____ \$/yr.

Series VAFT-BDV Boiler Blowdown Vessels

All Stainless Steel

For pressures to 150 psig (10 bar) / Capacities to 20,000 lb/hr (9,072 kg/hr)

Description

The Armstrong VAFT-BDV blowdown vessel is designed to efficiently separate surface blowdown water and flash steam. Built according to ASME Section VIII standards, the design is compact, requiring a small footprint in which to operate. For blowdown loads up to 20,000 lb/hr (9,072 kb/hr), Armstrong has a model to fit your needs.

- ASME-coded and stamped vessels
- 3/8" Carbon steel construction
- Stainless Steel Strike Plate
- Standard pressure rating 150 psi (10 bar) (Other pressure
- ratings available.)
- Vessels are designed to provide low velocity flash steam with no water carryover.

Standard Models:

Condensate Recovery

Equipment

VAFT-1238BDV (12")

VAFT-1638BDV (16")

Optional Equipment:

- 3/4" Commercial or Industrial Aftercooler Assembly
- 1" Commercial or Industrial Aftercooler Assembly
- Pressure Guage
- Safety Relief Valve

Blowdown Vessel										
Model Condensate Load/ Flash Load lb/hr		Diameter(in)	Inlet Size (in)	Discharge Size (in)	Material	Weight (lb)				
VAFT1238BDV	max 10,000/max 2,000	12	4	3	CS 150F 3/8" Nominal Thickness					
VAFT1638BDV	max 20,000/max 3,000	16	6	3	CS 150F 3/8" Nominal Thickness	Consult Factory				

Horizontal Flash Tanks (HAFT)

Features

- ASME coded and stamped vessels
- Standard pressure rating 150 psi (other pressure ratings available upon request)
- Standard models are designed and sized to cover a wide range of applications and loads
- Flash vessels are designed to provide low velocity flash steam with no water carryover
- Quick payback for flash recovery investment
- Special tanks available upon request
- · HAFT-Series horizontal flash tanks for low flash load applications.

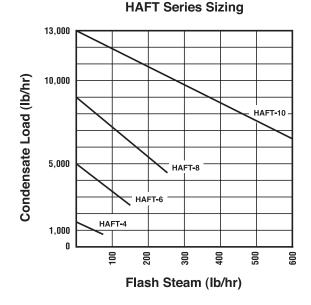
For a fully detailed certified drawing, refer to CDF #1038.

Flash Steam Savings Analysis

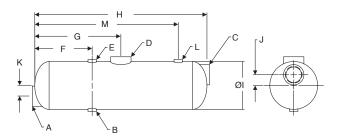
Part I: Determining the amount of flash steam produced

A. Condensate Load	A = lb/hr.	
B. Annual hours of operation	B = hrs/yr.	
C. Steam Cost	C =\$/1,000 lbs	
D. Flash steam percentage from chart (on page 264)	D = %	

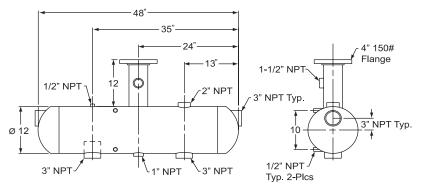
- E. Flash steam produced:
 - D x A = flash steam produced E = _____ lb/hr.

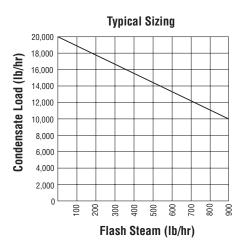

Part II: Determining dollar value of the flash steam

```
F. Annual flash steam savings:
```

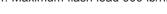


NOTES

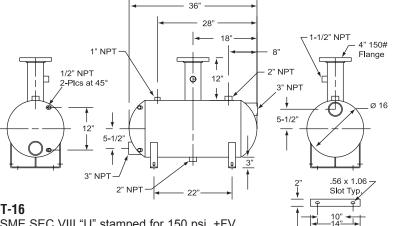
1. Models are ASME SEC. VIII "U" stamped for 150 psig 2. All connections are FNPT.

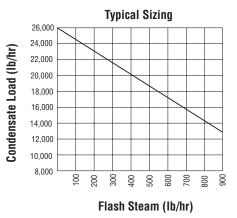

Physica	Physical Data — Standard Design Model (HAFT)									
Model	HAF	T-10	HAF	T-8	HAF	T-6	HAFT-4			
No.	in	mm	in	mm	in	mm	in	mm		
А	3	76	2	50	1-1/2	38	1-1/2	38		
В	1	25	1	25	1	25	1	25		
С	3	76	2	50	1-1/2	38	1-1/2	38		
D	3	76	2-1/2	64	2	50	1-1/2	38		
E	1	25	1	25	1	25	1	25		
F	12	305	12	305	12	305	8	203		
G	18	457	18	457	18	457	12	305		
Н	36	914	36	914	36	914	24	610		
1	10	254	8	203	6	152	4	102		
J	2-1/4	57	1-3/4	44	1-1/4	32	1	25		
K	2-1/4	57	1-3/4	44	1-1/4	32	1	25		
L	1	25	1	25	1	25	1	25		
М	30	762	30	762	30	762	18	457		


Note: All flash tanks are ASME coded for 150 psig (10 bar). Special sizes and connections available upon request.

Capacities — Standard	Design Model (HAFT)	
Model No.	Maximum Cor	ndensate Load
Mouer No.	lb/hr	kg/hr
HAFT-10	13,000	5,897
HAFT-8	9,000	4,082
HAFT-6	5,000	2,268
HAFT-4	1,500	680

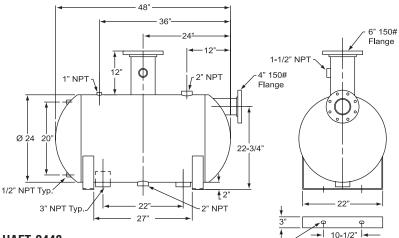


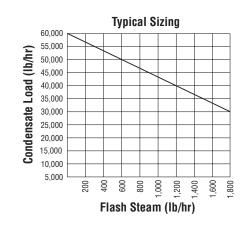




HAFT-12

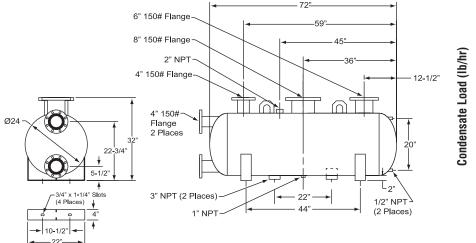
- 1. ASME SEC VIII "U" stamped for 150 psi, +FV
- 2. Temperature rating -20° to 550°F
- 3. Approximate volume: 22 gallons
- 4. Maximum flash load 900 lb/hr

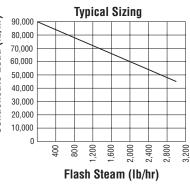




HAFT-16

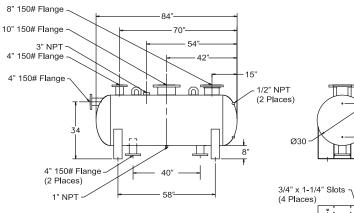
- 1. ASME SEC VIII "U" stamped for 150 psi, +FV
- 2. Temperature rating -20° to 550°F
- 3. Approximate volume: 30 gallons
- 4. Maximum flash load 900 lb/hr



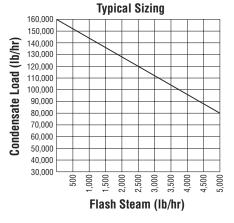

HAFT-2448

- 1. ASME SEC VIII "U" stamped for 150 psi, +FV
- 2. Temperature rating -20° to 550°F
- 3. Approximate volume: 85 gallons
- 4. Maximum flash load 1,800 lb/hr

Horizontal Flash Tanks (HAFT)



Condensate Recovery Equipment


HAFT-2472

- 1. ASME SEC VIII "U" stamped for 150 psi, +FV
- 2. Temperature rating -20° to 550°F
- 3. Approximate volume: 130 gallons
- 4. Maximum flash load 3,000 lb/hr

- 1. ASME SEC VIII "U" stamped for 150 psi, +FV
- 2. Temperature rating -20° to 550°F
- 3. Approximate volume: 240 gallons
- 4. Maximum flash load 5,000 lb/hr

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

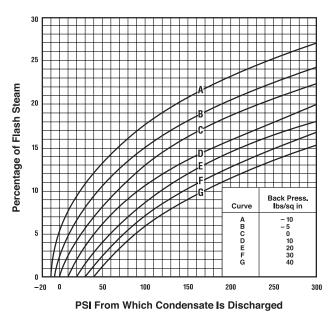
20" 44'

- 18" - 29"

How much flash steam is available?

- 1. Follow horizontal axis right to primary discharge pressure.
- 2. Follow vertically up to secondary pressure curve.
- 3. Move left to "Percentage of flash steam."

Example:


Condensate load = 10,000 lb/hr Primary pressure = 100 psig Secondary pressure = 10 psig

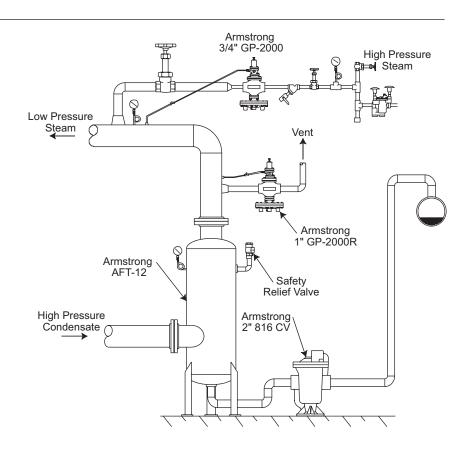
Percentage of flash = 10.6% Secondary steam load = 1,060 lb/hr (10,000 lb/hr x .1060 = 1,060 lb/hr)

Selection:

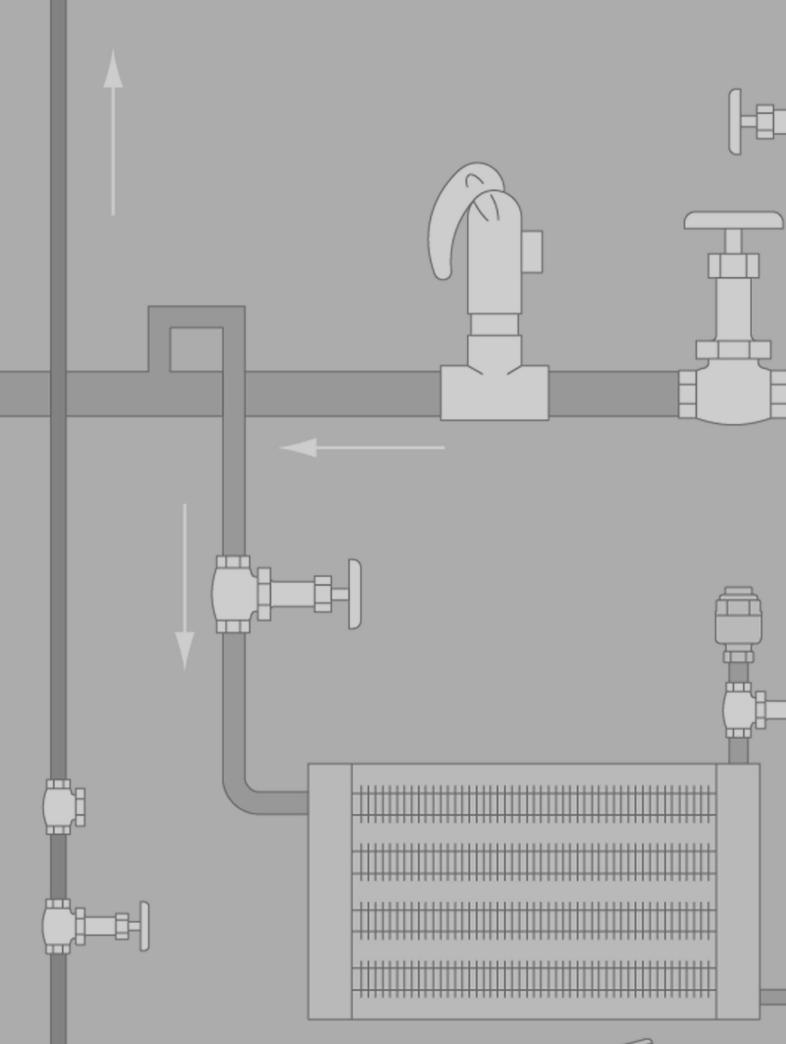
Model AFT-12

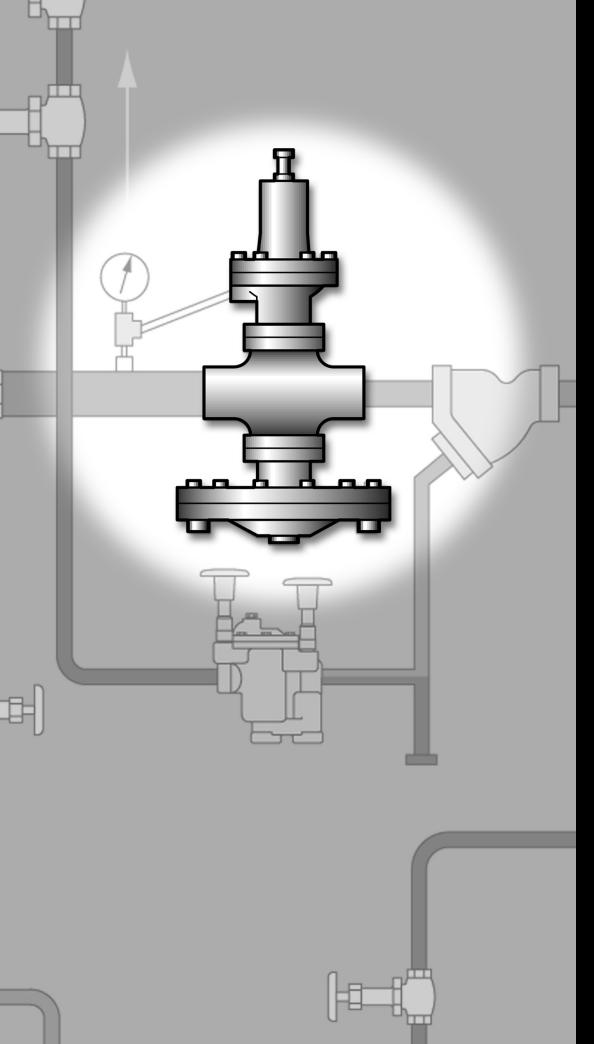
Percentage of Flash Steam Formed When Discharging Condensate to Reduced Pressure

Application Information


- A. Condensate Load to Flash Tank 6,000 lb/hr
- B. Pressure of Incoming Condensate 100 psig
- C. Flash Tank Pressure 20 psig
- D. Flash Percentage 9.5%
- E. Flash Amount = $A \times (D/100) = 570$ lb/hr
- F. Low Pressure Steam Required 2,500 lb/hr
- G. High Pressure Steam 200 psig
- H. Back Pressure 5 psig

Flash tank will accommodate (A) **6,000** lb/hr of condensate at (B) **100** psig, resulting in (E) **570** lb/hr of flash steam at (C) **20** psig. The flash tank shall be Armstrong Model AFT-12.


The back pressure regulator shall pass (E) **570** lb/hr of steam from (C) **20** psig to atmosphere. The back pressure regulator shall be Armstrong Model **1**" **GP-2000R**.


The pressure reducing valve shall pass (F) **2,500** lb/hr of steam from (G) **200** psig to (C) **20** psig. Pressure reducing valve shall be **3/4**" **GP-2000**.

The steam trap shall be an inverted bucket type with large vent and internal check valve. The steam trap will be sized using a 3:1 safety factor. The steam trap shall pass $3 \times (A - E)$ **16,290** lb/hr at a (C - H) **15** psi differential. The steam trap shall be an Armstrong Model **2'' 816 CV**.

Pressure and Temperature Controls

Armstrong[®] Pressure Reducing Valves

Armstrong pressure reducing valves (PRVs) and temperature regulators help you manage steam, air and liquid systems safely and efficiently. And assure uninterrupted productivity—by maintaining constant pressure or temperature for process control. In short, Armstrong products make using resources safe and productive...as well as environmentally sound.

For decades, Armstrong has devoted itself to learning—and sharing—all it can about energy conservation as it relates to steam equipment. As part of our product/service network, PRVs and temperature regulators represent expanded options for a reliable Armstrong solution.

PRV Types

Steam, liquids and gases usually flow at high pressures to the points of final use. At these points, a pressure reducing valve lowers the pressure for safety and efficiency and to match the requirements of the application. There are three types of pressure reducing valves.

Direct Acting. The simplest of PRVs, the direct acting type operates with either a flat diaphragm or convoluted bellows. Since it is self-contained, it does not need an external sensing line downstream to operate. It is the smallest and most economical of the three types and designed for low to moderate flows. Accuracy of direct acting PRVs is typically +/-10% of the downstream set point.

Internally Piloted Piston-Operated. This type of PRV incorporates two valves—a pilot and main valve—in one unit. The pilot valve has a design similar to the direct acting valve. The discharge from the pilot valve acts on top of a piston, which opens the main valve. This design makes use of inlet pressure in opening a larger main valve than could otherwise be opened directly. As a result, there is a greater capacity per line size and greater accuracy (+/-5%) than with the direct acting valve. As with direct acting valves the pressure is sensed internally, eliminating the need for an external sensing line.

Externally Piloted. In this type, double diaphragms replace the piston operator of the internally piloted design. This increased diaphragm area can open a larger main valve, allowing a greater capacity per line size than the internally piloted valve. In addition, the diaphragms are more sensitive to pressure changes, and that means accuracy of +/-1%. This greater accuracy is due to the location, external of the valve, of the sensing line where there is less turbulence. This valve also offers the flexibility to use different types of pilot valves (i.e., pressure, temperature, air loaded, solenoid or combinations).

Selector Guide

Pressure Reducin	g Valve Sele	ection						
If Fluid Is	If Inlet Pr	essure Is	If Outlet P	ressure Is	If Maximum Cap	acity Is Less Than	Look for Model	Find on Page
11 11 11 13	psig	bar	psig	bar	lb/hr	kg/hr	LOOK IOI MOUGI	T ind on Tage
	15 to 150	1 to 10	3 to 60	.21 to 4	425	193	GD-6N	282
	5 to 15	.3 to 1	2 to 12	.14 to .8	5,643	2,565	GP-2000L	291
	15 to 250	1 to 17	5 to 200	.34 to 13.8	18,024	8,175	GP-1000	291
Steam	15 to 300	1 to 20	1.5 to 200	.10 to 14	134,534	61,024	GP-2000 Series	296
Stedin	15 to 300	1 to 20	3 to 140	.21 to 9.6	1,038	471	GD-30S/GD-45	278/280
	15 to 250	1 to 17	3 to 140	.21 to 9.6	3,471	1,575	GD-30	278
	15 to 425	1 to 30	1.5 to 248	.10 to 17	25,706	11,660	GP-2000CS	296
	15 to 150	1 to 10	5 to 125	.34 to 8.6	4,505	2,048	GP-1000 SS/AS	291
If Fluid Is	If Inlet Pr	essure Is	If Outlet P	ressure Is	If Maximum Cap	acity Is Less Than	Look for Model	Find on Page
	psig	bar	psig	bar	gpm	l/min	LOOK IOF WOULD	Fillu oli Faye
	20 to 230	1.4 to 16	7 to 80	.48 to 5.5	141	534	GD-24	285
Water and Non-	15 to 150	1 to 10	3 to 60	.21 to 4.1	18	68	GD-6	282
corrosive Liquids	15 to 150	1 to 10	7 to 100	.48 to 6.9	1,323	5,007	GD-200	286
	15 to 300	1 to 20	7 to 130	.48 to 9.0	1,323	5,007	GD-200H	286
If Fluid Is	If Inlet Pr	essure Is	If Outlet P	ressure Is	If Maximum Cap	acity Is Less Than	Look for Model	Find on Page
	psig	bar	psig	bar	scfm	m3/min	LOOK IOF WOULD	Fillu oli Faye
	15 to 150	1 to 10	5 to 125	.34 to 8.6	413	702	GD-10F	283
	15 to 300	1 to 20	5 to 125	.34 to 8.6	8,329	14,153	GD-10	283
	15 to 150	1 to 10	3 to 60	.21 to 4.1	153	260	GD-6	282
Air and Non-	15 to 150	1 to 10	5 to 125	.34 to 8.6	6,488	11,024	GP-1000A	291
Corrosive Gases	15 to 150	1 to 10	7 to 100	.48 to 6.9	20,614	35,028	GD-200	286
	15 to 300	1 to 20	7 to 130	.48 to 9.0	20,614	35,028	GD-200H	286
	15 to 300	1 to 20	3 to 140	.21 to 9.6	374	764	GD-45	274
	15 to 250	1 to 17	3 to 150	.21 to 9.6	1,249	2,122	GD-30	272

NOTE: GD models are direct acting; GP models are pilot controlled.

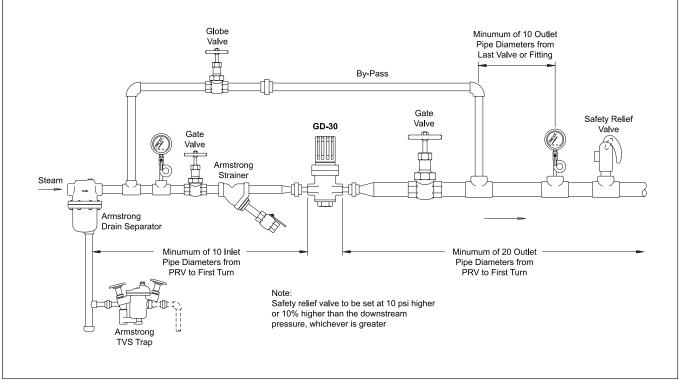
Pressure and Temperature Control ID Charts

Illustration	Туре	Fluid	Conn. Type	Max. Allow. Press. psig	TMA °F	Body Material	Model	Max. Oper. Press. psig	Connection Size	Located on Page
	GD-30 Direct Acting	Steam, Air,	NDT	250	410	Cast Bronze ASTM B584	GD-30	250	1/2", 3/4", 1", 1-1/2", 2"	070
	Valves	Non-Corrosive Gases	NPT	300	430	Stainless Steel AISI 316	GD-30S	300	1/2", 3/4", 1"	278
	GD-45 Direct Acting Valves	Steam, Air, Non-Corrosive Gases	NPT	300	450	Ductile Iron ASTM A536	GD-45	300	1/2", 3/4", 1"	280
A	GD-6 Direct Acting	Steam	NDT	450	450	Cast Iron	GD-6N	150	0/00 1/00 0/40 10	000
- Eg	Valves	Liquid, Gas	NPT	150	175	ASTM A278	GD-6	150	3/8", 1/2", 3/4", 1"	282
	GD-10 Direct Acting	Air, Non-		300		7ine and	GD-10	300	1/4", 3/8", 1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Valves	Corrosive Gases	NPT	250	175	Zinc and Aluminum	GD-10F	250	1/4", 3/8", 1/2", 3/4"	283
		00000		200			AF-10	200	1/4", 3/8", 1/2", 3/4", 1"	

Pressure and Temperature Controls

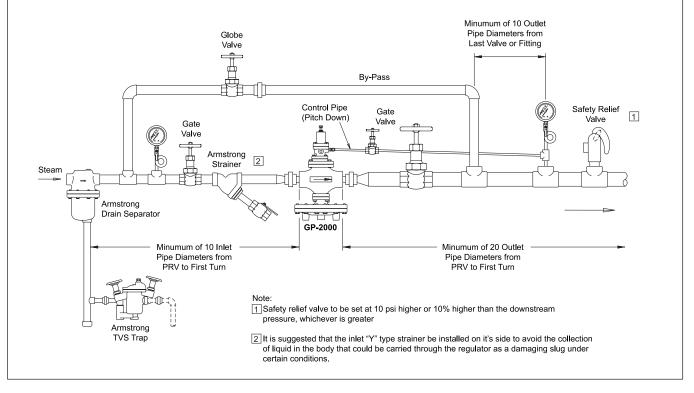
Armstrong[®] **Pressure and Temperature Control ID Charts**

Illustration	Туре	Fluid	Conn. Type	Max. Allow. Press. psig	TMA °F	Body Material	Model	Max. Oper. Press. psig	Connection Size	Located on Page
	GD-24 Direct Acting Valves	Water	NPT	230	175 210 (Viton)	Cast Bronze ASTM B584	GD-24	230	1/2°, 3/4°, 1°, 1-1/4°, 1-1/2°, 2°	285
	GD-200 Direct Acting Valves	Air, Water, Non-Corrosive and Non- Viscous	Flanged ANSI 150# Flanged	150 300	175 210 (Viton)	Ductile Iron ASTM A536	GD-200 GD-200H	150 300	2", 2-1/2", 3", 4", 5", 6"	286
	GD-20R Direct Acting Valves	Liquids Water, Non- Corrosive Gases	ANSI 300# Flanged ANSI 150#	150	175	Ductile Iron ASTM A536	GD-20R	150	1/2", 3/4", 1", 1-1/4", 1-1/2", 2", 2-1/2", 3", 4", 5", 6"	288
	GP-1000 Internal Pilot Piston Operated	Steam	NPT Flanged ANSI 150#	250 150	450	Ductile Iron ASTM A536	GP-1000	250 150	1/2", 3/4", 1", 1-1/4", 1-1/2", 2" 2", 2-1/2", 3", 4"	291
	GP-1000 A Internal Pilot Piston Operated	Air, Non- Corrosive Gases	NPT Flanged ANSI 150#	150	175	Ductile Iron ASTM A536	GP-1000A	150	1/2", 3/4", 1", 1-1/4", 1-1/2", 2" 2", 2-1/2", 3", 4"	291
	GP-1000 SS Internal Pilot Piston Operated	Steam	NPT	150	450	Stainless Steel AISI 304	GP-1000SS	150	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	291
	GP-1000 AS Internal Pilot Piston Operated	Steam	NPT	150	450	Stainless Steel AISI 304	GP-1000AS	150	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	291
	GP-2000 External Pilot Diaphragm		NPT	300			GP-2000	300	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Operated	Steam	Flanged ANSI 150 Flanged	185 300	450	Ductile Iron ASTM A536	Integral or Remote Pilot	185 300	2", 2-1/2", 3", 4", 6"	296
	GP-2000 L External Pilot Diaphragm Operated (low pressure)	Steam	ANSI 300 NPT Flanged ANSI 150#	150	450	Ductile Iron ASTM A536	GP-2000 L	15	1/2", 3/4", 1", 1-1/4", 1-1/2", 2" 2", 2-1/2", 3", 4", 6"	297
	GP-2000CS External Pilot		NPT	450				450		
	Diaphragm Operated	Steam	Flanged ANSI 150 Flanged ANSI 300	140 450	600	Carbon Steel Grade WCB	GP-2000CS	140 450	1/2", 3/4", 1", 1-1/4", 1-1/2", 2", 2-1/2", 3", 4"	298
	GP-2000K-1, GP-2000K-3,		NPT	300			GP- 2000K-1	300	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	GP-2000K-6 External Pilot Diaphragm Operated	Steam	Flanged ANSI 150# NPT	185 300	450	Ductile Iron ASTM A536	GP- 2000K-3 GP- 2000K-6	185 300	2", 2-1/2", 3", 4", 6"	299



Pressure and Temperature Control ID Charts

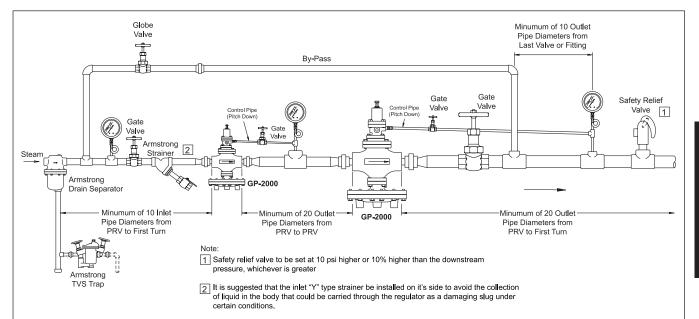
Illustration	Туре	Fluid	Conn. Type	Max. Allow. Press. psig	TMA °F	Body Material	Model	Max. Oper. Press. psig	Connection Size	Located on Page
	GD-2000K Direct Acting		NPT	300				300	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Diaphragm Operated	Steam	Flanged ANSI 150	185	450	Ductile Iron ASTM A536	GD-2000K	185	0" 0 1/0" 0" 4"	300
			Flanged ANSI 300	300				300	2", 2-1/2", 3", 4"	
	OBK-2000 Pneumatic Temperature Pilot	Air	NPT	250 (Process) 25 (Air)	400	Brass	OBK-2000	250 (Process) 25 (Air)	1/2" Process 1/8" Air	303
	GP-2000R External Pilot		NPT	200				200	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Diaphragm Operated	Steam	Flanged ANSI 150	185	450	Ductile Iron ASTM A536	GP-2000R	185		304
			Flanged ANSI 300	200				200	2", 2-1/2", 3", 4", 6"	
	GP-2000 On/Off		NPT						1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	External Pilot Solenoid Operated	Steam	Flanged ANSI 150	150	366	Ductile Iron ASTM A536	GP-2000	150		307
	Valve		Flanged ANSI 300						2", 2-1/2", 3", 4", 6"	
	OB-30/31 Direct Acting	Water, Steam and Non-	NDT	150	000	Bronze	OB-30 (Heating)	150		010
₩ U U U U U	Temperature Regulators	Corrosive Liquids	NPT	250	366	ASTM B584	OB-31 (Cooling)	250	1/2", 3/4", 1"	310
	OB-2000 Piloted		NPT	300		Pilot Bronze		300	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Diaphragm Operated Temperature	Steam	Flanged ANSI 150	185	450	ASTM B584 Valve	OB-2000	185		312
	Regulator		Flanged ANSI 300	300		Ductile Iron A536		300	2", 2-1/2", 3", 4", 6"	
	OB-2000 L Piloted		NPT			Pilot Bronze			1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Diaphragm Operated Temperature Regulator (low pressure)	Steam	Flanged ANSI 150	150	450	ASTM B584 Valve Ductile Iron A536	OB-2000 L	15	2", 2-1/2", 3", 4"	314
₽ 8	OB-2000PT Pressure/		NPT	300		Temp. Pilot		300	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Temperature Piloted Diaphragm	Steam	Flanged ANSI 150	185	450	Bronze ASTM B584 Valve and	0B-2000PT	185		316
	Operated Temperature Regulator		Flanged ANSI 300	300		Pressure Pilot Ductile Iron A536		300	2", 2-1/2", 3", 4", 6"	
	Control Valve		NPT	300				300	1/2", 3/4", 1", 1-1/2", 2"	
	Pnuematic Actuated Control Valve	Steam, Liquid	Flanged ANSI 150	185	450	Carbon Steel A216 Gr. WCB	1100	185	1/2", 3/4", 1", 1-1/2",	320
			Flanged ANSI 300	300				300	2", 2-1/2", 3, 4, 6, 8	


Armstrong[®] Application Data—Pressure Reducing Valves

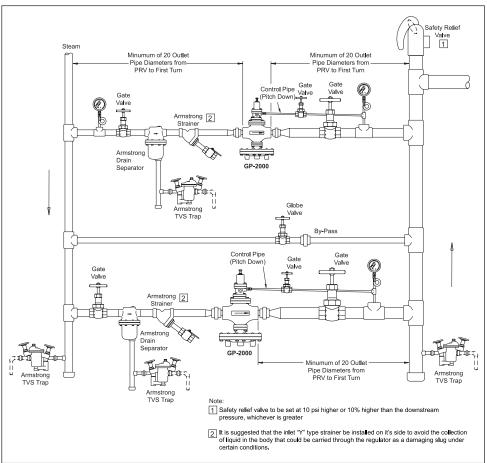
Direct Acting Single Stage Reduction

Typical Direct Acting PRV Installation

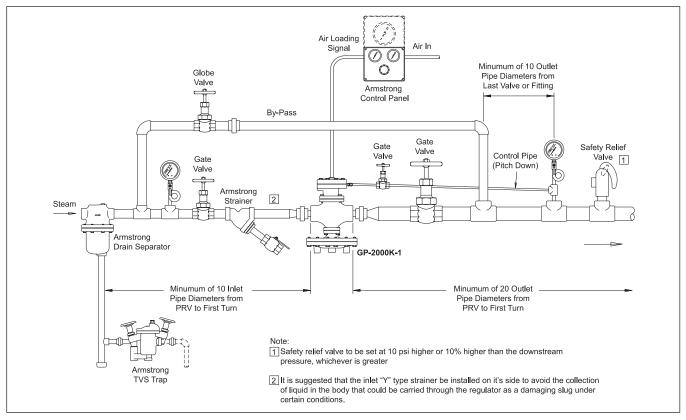
External Pressure Pilot Single Stage Reduction



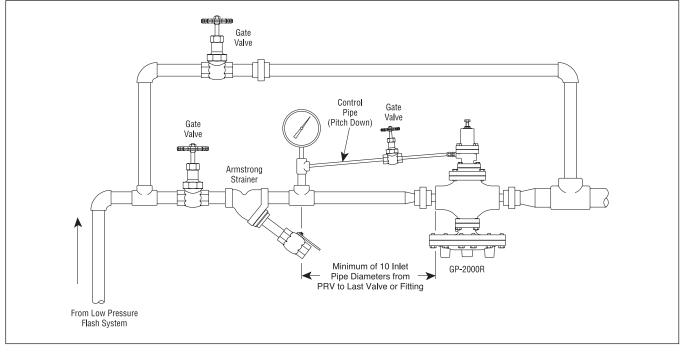
Typical External Pressure Pilot PRV Installation


External Pressure Pilot Two Stage Reduction

This piping application is used when the pressure turndown ratio is greater than that of a single valve. Pressure reduction is accomplished by using two valves in series to reduce the pressure in stages. Depending on the volume of fluid required and pressure reduction, the second stage valve typically will be larger in size than the first stage valve. Unless a specific intermediate pressure of the fluid is required, this intermediate pressure is typically selected so as to keep the pressure turndown ratios of both valves as similar as possible. This will help equalize and maximize the service life of both valves.


External Pressure Pilot One-Third to Two-Thirds Reduction Station

This piping application is used when the flow rangeability is greater than that of a single valve. Better control is achieved by piping two valves in parallel and sizing one to handle 1/3 the maximum load and the other 2/3 the maximum load. These two valves are staged by offsetting their pressure set points by 2-3 psig. The smaller valve is usually the lead valve and would have a pressure set point at the desired pressure. The larger valve is usually the lag valve and would have a pressure set point of 2-3 psig below the lead valve. This offset of set points will stage the valves so that the lag valve will remain closed until the lead valve can no longer pass the required flow and is wide open. This lack of flow will cause the set pressure to drop slightly until the lag valve opens and regulates at the higher demands of flow.


Armstrong[®] Application Data—Pressure Reducing Valves

Air Loaded External Pilot Single Stage Reduction

Typical Air Loaded External Pilot Reduction Station. Complete with remote located air loading control panel.

External Back Pressure Pilot Installation

Typical External Pilot Back Pressure Installation. Used to maintain a constant upstream pressure in the piping system.

Selection Formulas

C_V Value and Calculations

1. For Steam:

When $P_2 > \frac{P_1}{2} C_v = \frac{W}{2.1\sqrt{\Delta P (P_1 + P_2)}}$ *When $P_2 \le \frac{P_1}{2} C_v = \frac{W}{1.71 (P_1)}$

2. For Gas:

When
$$P_2 > \frac{P_1}{2} C_v = \frac{Q \sqrt{G (T+460)}}{963 \sqrt{\Delta P (P_1 + P_2)}}$$

When $P_2 \leq \frac{P_1}{Q} C_v = \frac{Q}{Q}$

$$men P_2 \le \frac{1}{2} C_v = \frac{1}{36.39 (P_1)}$$

3. For Liquid:

$$C_v = \frac{(\text{GPM})\sqrt{\text{G}}}{\sqrt{\text{G}}}$$

 $\sqrt{\Delta P}$

Formula Key

- W = Maximum flow capacity of steam, lbs/hr
- P_1 = Inlet pressure, psia (psig + 14.7)
- P₂ = Outlet pressure, psia (psig + 14.7)
- ΔP = Pressure drop (P₁ P₂) psi
- Q = Maximum flow capacity of gas SCFH
- G = Specific gravity
- T = Fluid temperature °F
- GPM = Maximum flow capacity of liquid GPM
- C_v = Valve flow coefficient
- * Formula applies only to piloted valves. With direct acting valves, at critical flow or sonic flow, capacities diminish with greater differential pressure.

Ordering Information

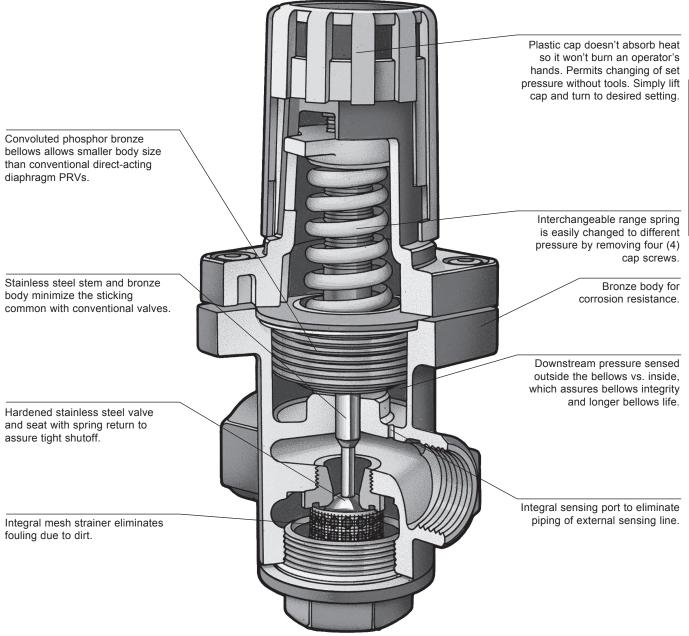
C_{v} Values for Each Product																										
												Co	nnectio	on Size	9											
Model	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
	1/4	8	3/8	10	1/2	15	3/4	20	1	25	1-1/4	32	1-1/2	40	2	50	2-1/2	65	3	80	4	100	5	125	6	150
GD-10	1	.4	1	.4	1	.4	2	.6	5	.8	5.	8	5.	8	4	3		-	-	_	-		-	_	-	_
GD-10F	1	.4	1	.4	1	.4	2	.6	5	.8	_	_	-	_	_	_	_	_	-	_	-	_	-	_	-	_
GD-6/6N	-	_	, ,	35		5	1	.0	1	.5	_	_	-	_	_	_	_	_	-	_	-	_	-	_	-	_
GD-200/200H	-	_	-	_	-	_	-	_	-	_	_	_		_	1	6	28	3	3	36	(68	7	'5	1	08
GD-20R	-	_	-	_	1	.5	2	.7		4	8	}	1	1	1	4	23	3	3	32	4	48	7	'5	1	08
GD-24	-	_	-	_	1	.5	1	.9		3	4	ļ	7	7	1	0	_	-	-	_	-	_	-	_	-	_
GD-30/GD-45	-	_	-	_	1	.3	1	.5	2	.5	_	-	5.0	5*	8.	5*	_	-	-	_	-	_	-	_	-	_
GP-2000 Series	-	_	-	_		5	7	.2	1(0.9	14	.3	18	.8	3	2	60)	1	78	1	20	-	_	2	50
GP-1000	-	_	-	_		1	2	.3		4	6.	5	ę)	1	6	25	5	3	36	(64	_	_	-	_]
OB-30/OB-31	-	_	-	_	3	.7	4	.6	5	.8	_	-	-	_	_	_	_	-	-	_	-	_	_	_	-	_]
OB-2000/OB-2000PT	-	_	-	_		5	7	.2	1(0.9	14	.3	18	.8	3	2	60)	1	78	1	20	_	_	-	_

NOTE: 50% reduced ports are available for all 2000 Series valves. Capacities and Cv are reduced by 1/2. GD-6/6N and GD-30/45 capacities cannot be determined with a formula consult capacity tables. Reference note under formula key above.

*GD-30 only.

When ordering please specify:

- 1. Model number
- 2. Connection size and type
- 3. Quantity
- 4. Service fluid
- 5. Specific gravity (if other than steam, air, water)
- 6. Fluid temperature
- 7. Maximum inlet pressure
- 8. Desired delivered pressure (reduced pressure)
- 9. Flow rate
- 10. Special conditions (if any)

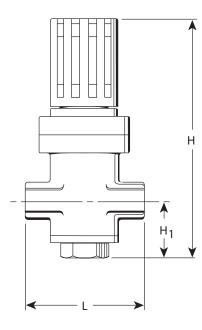


For Steam, Air and Non-Corrosive Gas Service

The simplest of pressure reducing valves, the direct acting type operates with either a flat diaphragm or convoluted bellows. Since it is self-contained, it does not need an external sensing line downstream to operate. It is the smallest and most economical of the three types and is designed for low to moderate flows. Accuracy of direct acting PRVs is typically +/-10%.

For Steam, Air and Non-Corrosive Gases

The GD-30 is a compact, high performance direct acting valve. Economical to buy and use, it's ideal for those low to moderate flow applications where accuracy of +/-10% is acceptable. The GD-30 is well suited for laundry and dry cleaning equipment, hospital equipment, tire molds, humidifiers, small heaters and applications in food processing. It provides tight shutoff for dead-end service on steam. Turndown ratio is 10:1 and ANSI Class IV Shutoff.


For a fully detailed certified drawing, refer to:GD-30 (bronze only)CDY #1038GD-30S (stainless steel)CDY #1089

GD-30/308	S Specificati	ons				· ·			
Model	Inlet	Reduced Pressure	Spring	Minimum		Maximum		Materials	
Number	Pressure psig (bar)	psig (bar)	Color	Differential psig (bar)	Application	Temp. °F (°C)	Body	Valve/Seat	Bellows
GD-30	15 - 250 (1 - 17)	3 - 15 (.21 - 1.0)	Yellow		Steam, Air, Non- Corrosive Gases	410 (210)	Cast Bronze ASTM B584	Stainless Steel	Phosphor Bronze ASTM B103*
GD-30S	15 - 300 (1 - 20)	7 - 80 (.48 - 5.5) 50 - 140 (3.4 - 9.6)	Blue Green	7 (.48)	Steam	430 (220)	Stainless Steel AISI 316	AISI 440/304	Stainless Steel AISI 316L

*Stainless steel optional

GD-30/30S Dimens	ions and Weig	jhts								
					Connect	ion Size				
Symbol	in	mm	in	mm	in	mm	in	mm	in	mm
	1/2	15	3/4	20	1	25	1-1/2*	40	2*	50
L	3-1/8	80	3-3/8	85	3-3/4	95	5-1/2	140	5-7/8	150
H ₁	2	47	2	47	2	47	3	77	3	77
Н	7-1/2	191	7-1/2	191	7-1/2	191	12-1/8	307 1	2-1/8	307
Weight Ib (kg)	4-1/4	(1.9)	4-1/4	(1.9)	4-1/2	(2.0)	21-3/8	3 (9.7)	22 (10)
Cv	1	.3	1	.5	2	.5	5	.6	8.	5

NOTE: GD-30 capacities cannot be determined with a formula—consult capacity tables. Reference note under formula key on page 275. *GD-30S available in 1/2", 3/4", and 1" only.

GD-30/30S

D-30 Ca	pacities—	-Steam											
			lb/hr		-					kg/hr		-	
Inlet	Outlet		Co	nnection S	ize		Inlet	Outlet		Co	nnection S	ize	
ps		1/2	3/4	in 1	1-1/2	2	ba		15	20	mm 25	40	50
C _v Fa	-	1.3	1.5	2.5	5.6	8.5	C _v Fa		1.3	1.5	2.5	5.6	8.
15	7	49	56	92	198	297	1.0	.5	22	25	42	90	13
	13	53	61	105	216	331		.9	24	28	48	98	15
20	7	42	55	63	180	264	1.4	.5	19	25	35	82	12
	23	62	71	112	242	408		1.6	28	32	51	110	18
30	15	53	60	101	209	309	2.0	1.0	24	27	46	95	14
	3	33	40	60	139	216		.2	15	18	27	63	9
	32	99	121	187	407	617		2.2	45	55	85	185	28
40	20	79	97	159	330	517	2.8	1.4	36	44	72	150	23
	4	40	55	77	159	264		.3	18	25	35	72	12
	40	130	143	242	539	837		2.8	59	65	110	245	38
50	20	99	115	187	407	628	3.4	1.4	45	52	85	185	2
	5	48	62	88	193	297		.3	22	28	40	88	1:
	48	137	154	265	584	899		3.3	62	70	120	265	4(
60	40	150	165	289	617	969	4.0	2.8	68	75	131	280	44
00	18	90	104	170	374	584	4.0	1.2	41	47	77	170	20
	6	55	73	99	220	331		.4	25	33	45	100	1!
	64	176	205	342	738	1,168		4.4	80	93	155	335	5
	54	187	225	353	782	1,201		3.7	85	102	160	355	54
80	23	121	137	220	489	749	5.5	1.6	55	62	100	222	34
	8	60	77	108	231	363		.5	27	35	49	105	1
	80	203	242	397	863	1,355		5.5	92	110	180	392	6
100	66	225	262	437	958	1,465		4.5	102	119	198	435	6
100	40	198	231	375	837	1,278	6.9	2.8	90	105	170	380	5
	10	68	79	132	297	473		.7	31	36	60	135	2
	96	231	276	452	991	1,520		6.6	105	125	205	450	6
	70	276	311	518	1,168	1,818		4.8	125	141	235	530	8
120	45	240	267	450	980	1,509	8.3	3.1	109	121	204	445	6
	12	110	121	198	462	705		.8	50	55	90	210	3
	120	287	333	551	1,212	1,862		8.3	130	151	250	550	84
	85	364	421	705	1,531	2,369		5.9	165	191	320	695	1,0
150	55	298	353	595	1,278	2,005	10.3	3.8	135	160	270	580	9
	15	132	165	254	562	848		1.0	60	75	115	255	3
	140	408	485	794	1,719	2,677		9.7	185	220	360	780	1,2
	115	430	507	860	1,829	2,832		8.0	195	230	390	830	1,2
180	70	386	430	739	1,619	2,501	12.4	4.8	175	195	335	735	1,1
	18	165	187	309	683	1,035		1.2	75	85	140	310	4
	140	461	518	871	1,983	3,063		9.7	209	235	395	900	1,3
	140	401	540	904	2,005	3,003		9.7 8.0	209	235	410	900	1,4
200	80	430	496	827	1,818	2,810	13.8	5.5	195	245	375	825	1,2
	20	209	242	386	848	1,300		1.4	95	110	175	385	5
	140	485	573	948	2,060	3,195		9.7	220	260	430	935	1,4
	140	405	584	961	2,000	3,195		9.7 8.0	225	265	430	935	1,4
225	85	463	540	904	1,983	3,063	15.5	5.9	210	245	410	900	1,3
	23	403 254	298	496	1,079	1,675		1.6	115	135	225	490	76
	140	525	606	1,014	2,226	3,438		9.7	238	275	460	1,010	1,5
	120	551	584	1,038	2,220	3,471		8.3	250	265	400	1,010	1,5
250	70	463	529	893	1,939	2,997	17.2	4.8	210	240	405	880	1,3
	25	276	329	529	1,146	1,796		1.7	125	145	240	520	8
	140	529	613	1,023	-	-		9.7	240	278	464	- 520	-
	120	529	613	1,023	_	_		8.3	240	278	464	_	
275	70	470	542	902	_	_	18.9	4.8	240	246	404	_	
	28	295	344	562	_	_		4.0 1.9	134	156	409 255	_	-
	20 140	529	613	1,023	_	_		9.7	240	278	464	_	
	140	529	613	1,023	_	_		9.7 6.9	240 240	278	404	_	-
300	70	529 478	551	926	_		20.0	0.9 4.8	240 217	278	404 420		
					_	_						_	-
	30	309	359	595	-	-		2.7	140	163	270	-	-

NOTE: For air capacities scfm, multiply steam capacities (lb/hr) by 0.36. For air capacities m3/hr, multiply steam capacities (kg/hr) by 1.35. Maximum pressure reduction ratio 10:1.

For Steam, Air and Non-Corrosive Gas Service

The GD-45 is a compact, high-performance, direct-acting valve. Inexpensive to buy and use, it is ideal for those moderate flow applications that do not justify the higher cost of pilot-controlled valves.

The GD-45 is well-suited for laundry and dry-cleaning equipment, hospital equipment, tire molds, humidifiers, small heaters, and applications in food processing. It provides tight, quick, easy installation.

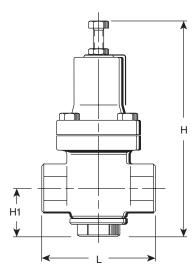
Quick, easy installation

- Lightweight and compact
- Piping supports the valve of ductile iron for greater durability and higher inlet pressure
- Screwed connections
- No external sensing lines or parts needed
- Maximum turndown ratio 10:1
- ANSI Class IV Shutt off

Simple selection

- 1/2", 3/4" and 1"
- Match pipe size normally
- Three pressure range springs (for best control when ranges overlap, use smaller range spring)

Long life/easy maintenance


- · Highly resilient phosphor-bronze bellows
- · Hardened stainless-steel working parts
- Integral strainer (removable for cleaning) for protection from wear or dirt
- Teflon gaskets used at all joints for improved leakage prevention

For a fully detailed certified drawing, refer to CDY #1090.

GD-45 Specificati	ions						
Service	Inlet Pressure	Reduced Pressure psig (bar)	Minimum Differential	Maximum Temperature		Materials	
Service	psig (bar)	neuuceu riessuie psig (bai)	psig (bar)	°F (°C)	Body	Valve/Seat	Bellows
		3 - 15 (.21 - 1.0) Yellow				Hardened	
Steam, Air Non- Corrosive Gases	15 - 300 (1 - 20)	7 - 80 (.48 - 5.5) Blue	7 (.48)	450 (232)	ASTM A536 Ductile Iron	Stainless Steel	Phosphor Bronze ASTM B103
CULLUSIVE GASES	(1-20)	50 - 140 (3.4 - 9.6) Green				AISI 420	ASTIVI D 103

D-45 Dimensions and We	ights					
			Connect	ion Size		
Symbol	in	mm	in	mm	in	mm
	1/2	15	3/4	20	1	25
L	4-3/8	111	4-3/8	111	4-3/8	111
H ₁	1-7/8	47	1-7/8	47	1-7/8	47
Н	8-1/2	216	8-1/2	216	8-1/2	216
Wt, Ib (kg)			7 (3	3.2)		
Cv	1	.3	1.	5	2.	5

NOTE: GD-45 capacities cannot be determined with a formula—consult capacity tables. Reference note under formula key on page 275.

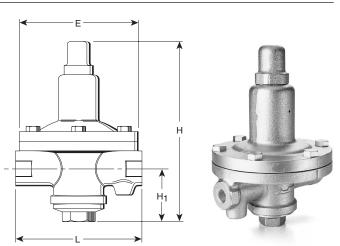
GD-45

GD-30 Capacities—Steam

		lb/hr						kg/hr		
Intet	0	(Connection Siz	2e		Inlat	0	(Connection Size	e
Inlet	Outlet		in			Inlet	Outlet		mm	
p	sig	1/2	3/4	1		ba		15	20	25
C _v F	actor	1.3	1.5	2.5		C _v Fa	actor	1.3	1.5	2.5
15	7	49	56	92		1.0	.5	22	25	42
20	13	53	61	105		1.4	.9	24	28	48
20	7	42	55	63		1.4	.5	19	25	35
	23	62	71	112			1.6	28	32	51
30	15	53	60	101		2.0	1.0	24	27	46
	3	33	40	60			.2	15	18	27
	32	99	121	187			2.2	45	55	85
40	20	79	97	159		2.8	1.4	36	44	72
	4	40	55	77			.3	18	25	35
50	40	130	143	242			2.8	59	65	110
50	20	99	115	187		3.4	1.4	45	52	85
	5	48	62	88			.3	22	28	40
	48	137	154	265			3.3	62	70 75	120
60	40	150	165	289		4.0	2.8	68	75	131
	18	90	104	170			1.2	41	47	77
	6	55	73	99			.4	25	33	45
	64	176	205	342			4.4	80	93	155
80	54	187	225	353		5.5	3.7	85	102	160
	23	121	137	220			1.6	55	62	100
	8	60	77	108			.5	27	35	49
	80	203	242	397			5.5	92	110	180
100	66	225	262	437		6.9	4.5	102	119	198
	40	198	231	375			2.8 .7	90	105	170
	10 96	68 231	79 276	132 452			6.6	31 105	36 125	60 205
	70	231	311	452 518			4.8	105	125	200
120	45	240	267	450		8.3	4.0 3.1	123	141	230
	12	110	121	198			.8	50	55	204 90
	12	287	333	551			.o 8.3	130	151	250
	85	364	421	705			6.5 5.9	165	191	320
150	55	298	353	595		10.3	3.8	135	160	270
	15	132	165	254			3.0 1.0	60	75	115
	140	408	485	794			9.7	185	220	360
	115	430	507	860			8.0	195	230	390
180	70	386	430	739		12.4	4.8	175	195	335
	18	165	187	309			4.0	75	85	140
	140	461	518	871			9.7	209	235	395
	115	474	540	904			8.0	215	245	410
200	80	430	496	827		13.8	5.5	195	225	375
	20	209	242	386			1.4	95	110	175
	140	485	573	948			9.7	220	260	430
	115	496	584	961			8.0	225	265	436
225	85	463	540	904		15.5	5.9	210	245	410
	23	254	298	496			1.6	115	135	225
	140	525	606	1,014			9.7	238	275	460
	120	551	584	1,038			8.3	250	265	471
250	70	463	529	893		17.2	4.8	210	240	405
	25	276	320	529			1.7	125	145	240
	140	528	616	1,023			9.7	240	280	465
	120	551	627	1,038			8.3	250	285	477
300	70	484	550	913		20	4.8	220	250	415
	30	319	352	583			2.0	145	160	265

NOTE: For air capacities scfm, multiply steam capacities (lb/hr) by 0.36. For air capacities m3/hr, multiply steam capacities (kg/hr) by 1.35. Maximum pressure reduction ratio 10:1.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.


281

For Steam, Air and Water

The GD-6N and GD-6 are compact, direct acting diaphragm valves ideal for low-flow applications, including laundry/ dry cleaning equipment, hospital equipment, tire/plastic molds and food processing. Lightweight and compact, the valves require no external sensing lines or additional parts. External adjusting screw with locking nut and cover make for quick, easy setting and adjustment. Tight shutoff for dead-end service. Removable stainless steel diaphragm, hardened stainless steel working parts (6N), integral removable strainer (6N) and in-line renewable valve and seat. Available in 3/8", 1/2", 3/4" and 1" sizes with a choice of two set pressure spring ranges.

For a fully detailed certified drawing, refer to CDY #1040.

GD-6N/G	GD-6N/GD-6 Specifications													
Madal	Annlingtion	Inlet	Reduced	Spring	Minimum	Maximum		Materials						
Model	Application	plication Pressure Pressure psig (bar) psig (bar)		Color	Differential psig (bar)	Temperature °F (°C)	Body	Main Valve	Valve Seat	Diaphragm				
GD-6N	Steam	15 - 150	3 - 15 (.21 - 1.0)	Yellow Stripe		450 (232)	Cast Iron	Stainless Steel AISI 304	Stainless Steel AISI 420	Stainless Steel				
GD-6	Liquid Gas	(1 - 10)	and 15 - 60 (1 - 4)	Yellow/Blue Stripe	7 (.48)	175 (79)	ASTM A278	Brass (w/Disc) ASTM B16	Bronze ASTM B584	AISI 304				

GD-6	5N Capa	cities	s—St	eam								
		lb/h	ır						kg/	/hr		
		Co	nnec	tion S	ize	1			C	onneo	tion S	ze
Inlet	Outlet			in		1	Inlet	Outlet		r	nm	
F	sig	3/8	1/2	3/4	1	1		bar	10	15	20	25
15	3 - 8	18	25	51	76	1	1.0	.26	8.2	11.3	23.1	34.5
20	13	12	17	34	51]	1.4	.9	5.4	7.7	15.4	23.1
20	3 - 10	21	30	59	89		1.4	.27	9.5	13.6	26.8	40.4
	18	14	20	41	61			1.2	6.4	9.1	18.6	27.7
25	15	19	28	55	83		1.7	1.0	8.6	12.7	24.9	37.6
	3 - 12	24	34	68	102			.28	10.9	15.4	30.8	46.3
	23	16	23	47	71			1.6	7.3	10.4	21.3	32.2
30	20	21	30	59	89		2.1	1.4	9.5	13.6	26.8	40.4
	3 - 15	27	38	76	115			.2 - 1	12.2	17.2	34.5	52.2
	32	21	30	60	90			2.2	9.5	13.6	27.2	40.8
40	25	28	40	79	119		2.8	1.7	12.7	18.1	35.8	54.0
	4 - 20	33	47	94	140			.3 - 1.4	15.0	21.3	42.6	63.5
	40	25	36	73	109			2.8	11.3	16.3	33.1	49.4
50	32	33	47	94	141		3.4	2.2	15.0	21.3	42.6	64.0
	5 - 25	39	55	111	166			.3 - 1.7	17.7	24.9	50.3	75.3
	48	30	43	55	128			3.3	13.6	19.5	24.9	58.1
60	40	37	53	107	160		4.1	2.8	16.8	24.0	48.5	72.6
	6 - 30	45	64	128	192			.4 - 2.1	20.4	29.0	58.1	87.1
	60	37	52	104	156			4.1	16.8	23.6	47.2	70.8
75	48	47	67	135	202		5.2	3.3	21.3	30.4	61.2	91.6
	7 - 37	54	77	153	230			.5 - 2.6	24.5	34.9	69.4	104.3
100	65	61	87	173	260		6.9	4.5	27.7	39.5	78.5	117.9
100	10 - 50	69	98	196	294		0.9	.7 - 3.4	31.3	44.5	88.9	133.4
125	13 - 60	84	119	239	358		8.6	.9 - 4.1	38.1	54.0	108.4	162.4
150	15 - 60	99	142	283	425		10.3	1 - 4.1	44.9	64.4	128.4	192.8

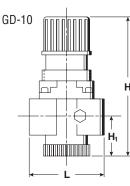
GD-6N/GD-6 Di	D-6N/GD-6 Dimensions and Weights													
				Conne	ction Size)								
Symbol	in	mm	in	mm	in	mm	in	mm						
	3/8	10	1/2	15	3/4	20	1	25						
L	6-1/2	i-1/2 165 6-1/2 165 7-1/4 185 7-1/4 185												
Н	9-1/2	237	9-1/2	237	10-1/4	261	10-1/4	261						
H ₁	2-1/4	57	2-1/4	57	3	76	3	76						
E	6-1/8	155	6-1/8	155	7	175	7	175						
Wt lb (kg)	12 (5	12 (5.5) 12 (5.5) 18 (8.2) 18 (8.2)												
Cv	.3	5	.5		1.0		1.5							

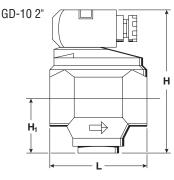
GD-6 C	apacitie	es—W	later							
		gpm						l/min		
$\Delta \mathbf{P}$	C	onnec	tion Siz	e		ΔΡ	C	onnect	ion Siz	e
ΔΓ		i	in			Δr		m	m	
psig	3/8	1/2	3/4	1		bar	10	15	20	25
5	.8	1.1	2.2	3.4		.35	3.0	4.2	8.3	12.9
10	1.1	1.6	3.2	4.7		.7	4.2	6.0	12.1	17.8
15	1.4	1.9	3.9	5.8		1.0	5.3	7.2	14.8	22.0
25	1.8	2.5	5.0	7.5		1.7	6.8	9.5	18.9	28.4
50	2.5	3.5	7.1	10.6		3.5	9.5	13.2	26.9	40.1
75	3.0	4.3	8.7	13.0		5.2	11.4	16.3	32.9	49.2
100	3.5	5.0	10.0	15.0		6.9	13.2	18.9	37.9	56.8
125	25 3.9 5.6 11.2 16.8					8.6	14.8	21.2	42.4	63.6
147	147 4.2 6.1 12.1 18.2						15.9	23.1	45.8	68.9

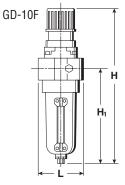
NOTE: For air capacities scfm, multiply steam capacities (lb/hr) by 0.36. For air capacities m3/hr, multiply steam capacities (kg/hr) by 1.35.

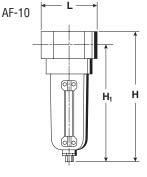
Maximum pressure reduction ratio 10:1.

ANSI Class IV Shutoff.


For Air and Non-Corrosive Gases


The GD-10/10F is a lightweight direct acting diaphragm valve used primarily for pneumatic tool air supply and nonhazardous gas regulation. Screwed connections make it easy to support in position without external sensing lines or other parts. Zinc or aluminum bodies eliminate rust and scale. Plug, seat and diaphragm are renewable in-line, and you can make quick adjustments externally with locking handle. Quarter-inch pressure gauge connection is standard, and all units are capable of tight shutoff for dead-end service. GD-10 available in sizes 1/4" - 2." Highly efficient Model AF-10 air filters with zinc or aluminum bodies are used to remove liquids and solid particles from compressed air. The AF-10 is available in sizes 1/4" - 1."


For a fully detailed certified drawing, refer to list below.GD-10CDY #1003GD-10FCDY #1002AF-10CDY #1004


GD-10/G	D-10F/AF-10 Sp	ecificatio	ns							
		Inlet Pres.	Reduced	Min. Differ.	Max.			Materials		
Model	Application	psig (bar)	Pressure psig (bar)	psig (bar)	Temp. °F (°C)	Body in (mm)	Bowl	Main Valve in (mm)	Valve Plug in (mm)	Diaphragm
GD-10		15 - 300 (1 - 20)	5 - 125 (.34 - 8.6)	7 (.48)		Zinc 1/4, 3/8, 1/2, 3/4 (6, 9, 15, 20) Aluminum 1 - 2 (25 - 50)		Zinc 1/4, 3/8, 1/2, 3/4 (6, 9, 15, 20) Aluminum 1 - 2 (25 - 50)	Brass 1/4, 3/8, 1/2, 3/4 (6, 9, 15, 20) Nylon 1 - 2 (25 - 50)	Nitrile
GD-10F	Air and Other Non-Corrosive Gases	15 - 250 (1 - 17)	5 - 125 (.34 - 8.6)	7 (.48)	175 (79)		Zinc		Brass	Nitrile
AF-10	Guilio	0 - 250 (0 - 17)		_		Zinc 1/4, 3/8, 1/2, 3/4 (6, 9, 15, 20) Aluminum 1 (25)	1	_	_	_

GD-10 Dimensio	10 Dimensions and Weights													
						Co	nnection Size	9						
Symbol	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm		
	1/4	8	3/8	10	1/2	15	3/4	20	1, 1-1/4, 1-1/2	25, 32, 40	2	50		
L	2-5/8	67	2-5/8	2-5/8 67 2-5/8 67 3-1/2 98 4-1/4 108 6										
Н	5-3/8	136	5-3/8	136	5-3/8	136	5-7/8	149	7-1/8	181	9-3/4	248		
H1	1-1/2	38	1-1/2	38	1-1/2	38	1-1/2	38	2-3/8	60	3-9/16	90		
Wt, Ib (kg)	1-1/2	(.7)	1-1/2	(.7)	1-1/2	(.7)	2 (.9)	3 (1.4)	10 ((4.5)		
Cv	1.4 2.6 5.8 43													

Pressure and Temperature Controls

GD-10, GD-10F, AF-10 **Armstrong**[®]

GD-10/GD-10F Capacities—Air

		scfm								
1.1.1	0.11.1		Conne	ection Size						
Inlet	Outlet			in						
p	sig	1/4, 3/8, 1/2	3/4	1*, 1-1/4, 1-1/2	2**					
15	8	19	35	78	580					
	23	24	44	98	727					
30	15	33	61	136	1,011					
	5 - 7	38	70	157	1,166					
	33	26	49	109	810					
40	20	42	77	173	1,280					
	5 - 12	46	86	192	1,427					
	40	34	63	141	1,046					
50	30	46	86	191	1,416					
	5 - 17	55	102	228	1,687					
	60	49	91	203	1,503					
75	45	66	123	273	2,026					
	7 - 30	76	141	316	2,339					
	80	64	118	264	1,958					
100	60	86	159	355	2,634					
	10 - 42	97	181	403	2,991					
	100	79	146	326	2,413					
125	75	106	196	437	3,241					
	13 - 55	119	220	491	3,643					
	120	93	173	387	2,868					
150	85	129	240	535	3,967					
	15 - 67	140	260	579	4,295					
	125	126	235	524	3,884					
175	100	149	276	617	4,573					
	18 - 80	161	299	667	4,947					
200	125	161	298	666	4,934					
200	20 - 92	182	339	755	5,599					
250†	25 - 125	225	417	931	6,903					
300	30 - 125	267	496	1,107	8,207					
350**	35 - 125				9,511					
425**	43 - 125	_			11,467					

		m	³ /hr		
Inlot	Outlot		Connec	tion Size	
Inlet	Outlet		r	ım	
b	ar	8, 10, 15	20	25*, 32, 40	50**
1.0	0.6	32	60	133	985
	1.6	40	75	167	1,235
2.0	1.0	56	104	232	1,718
	.34 - 48	64	120	267	1,981
	2.3	45	83	186	1,377
2.8	1.4	71	131	293	2,174
	.3483	79	147	327	2,424
	2.8	58	107	240	1,777
3.4	2.1	78	145	324	2,405
	.34 - 1.17	93	173	387	2,867
	4.1	83	154	344	2,553
5.2	3.1	112	208	464	3,442
	.48 - 2.1	129	240	536	3,975
	5.5	108	201	449	3,327
6.9	4.1	146	271	604	4,475
	.69 - 2.9	165	307	686	5,082
	6.9	134	248	553	4,101
8.6	5.2	179	333	743	5,507
	.89 - 3.8	202	374	835	6,190
	8.3	159	295	657	4,873
10.3	5.9	219	408	909	6,741
	1.03 - 4.6	238	441	984	7,298
	8.6	215	399	890	6,599
12.1	6.9	253	470	1,048	7,769
	1.24 - 5.5	274	508	1,134	8,405
10.0	8.6	273	507	1,131	8,383
13.8	1.38 - 6.3	310	575	1,283	9,513
17.2†	1.7 - 8.6	382	709	1,582	11,729
20.0	2.1 - 8.6	454	843	1,881	13,944
24.1**	2.4 - 8.6		_		16,159
29.3**	3.0 - 8.6	_	_		19,482

* GD-10F not available above 3/4" (20 mm).
** 2" (50 mm) GD-10 valve maximum inlet pressure is 425 psi (30 bar).
† GD-10F has a maximum inlet pressure of 250 psi (17 bar).

GD-10F Dimens	GD-10F Dimensions and Weights													
			C	onnec	tion Size	9								
Symbol	in	mm	in	mm	in	mm	in	mm						
	1/4													
L	2-3/4	70	2-3/4	70	2-3/4	70	3-7/8	98						
Н	9-3/8	238	9-3/8	9-3/8 238		238	10-7/8	276						
H ₁	5-3/4	146	5-3/4	146	5-3/4	146	6-3/8	162						
Wt, Ib (kg)	2-1/2	2-1/2 (1.2) 2-1/2 (1.2) 4-1/2 (2.0) 4-1/2 (2.0)												
Cv			1.4	1.4 2.6										

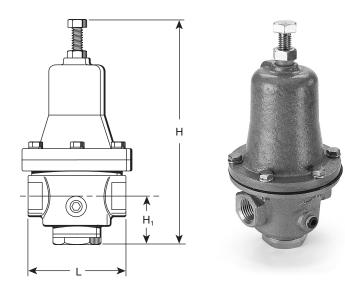
AF-10 Dimer	AF-10 Dimensions and Weights												
				C	onnect	ion S	ize						
Symbol	in	mm	in	mm	in	mm	in	mm	in	mm			
	1/4	<i>\</i> 4 8 3 <i>\</i> 8 10 1 <i>\</i> 2 15 3 <i>\</i> 4 20 1 25											
L	2-3/4	70	2-3/4	70	2-3/4	70	3-7/8	98	4-3/4	121			
Н	6-3/8	162	6-3/8	162	6-3/8	162	7	178	11-3/8	289			
H ₁	5-3/4	3/4 146 5-3/4 146 5-3/4 146 6-3/8 162 10 254											
Wt, Ib (kg)		2 (.9) 3 (1.4)											

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

284

Temperature Controls

Pressure and



For Non-Potable Water Service Only

An industrial-grade valve for non-potable water systems, the GD-24 is lightweight, compact and economical. Comes with screwed connections and will mount in any position. Requires no external sensing lines. Bronze body and high temperature diaphragm suitable for hot or cold process water service. Valve, seat and diaphragm are renewable in line. External adjusting screw with lock. Six sizes, 1/2" through 2". ANSI Class IV shutoff.

Illegal for potable water service per SDWA section 1417 (As Amended).

For a fully detailed certified drawing, refer to CDY #1023.

GD-24 Specifi	cations										
Application	Maximum	Reduced	Minimum Differential	Maximum Temperature	Materials						
Аррпсанон	on Pressure Pressure Rai psig (bar) psig (bar)		psig (bar)	°F (°C)	Body	Main Valve	Valve Seat	Diaphragm			
Hot or Cold Water	20 - 230 (1.3 - 16)	7 - 80 (.48 - 5.5)	7 (.48)	175* (79)	Cast Bronze ASTM 584		Stainless Steel AISI 304	NBR**			

*With Viton[®] diaphragm maximum temperature is 210°F (99°C).

**Viton optional.

GD-24 Capa	cities—W	ater			•	·				•				·
			gpm					l/min						
ΔP			Connect	tion Size				△P Connection Size						
Δr			i	n				Δr	mm					
DP (psig)	1/2	3/4	1	1-1/4	1-1/2	2		DP (bar)	15	20	25	32	40	50
7	4	5	8	11	19	26		0.5	15	20	30	40	70	100
10	5	6	9	13	22	32		0.7	18	24	36	48	84	120
15	6	8	12	15	27	39		1.0	22	29	44	59	103	147
25	8*	10	15	20	35	50		1.7	30*	38	57	76	132	189
50	11	14*	21	28	49	71]	3.4	40	53*	80	107	187	268
75	13	17	26*	35	61*	87	1	5.2	49	66	98*	131	231*	328
100	15	20	30	40*	70	100*	1	6.9	57	76	114	151*	265	378*
125	17	22	34	45	78	112		8.6	63	85	127	169	296	423
150	18	24	37	49	86	122		10.3	70	93	139	185	325	464
175	20	26	40	53	93	132]	12.0	75	100	150	200	351	501
200	21	28	42	57	99	141		13.8	80	107	161	214	375	535

*At flows greater than this, velocities will exceed 10 ft/sec and pipe erosion could occur. NOTE: Maximum pressure reduction ratio 10:1.

GD-24 Dimen	D-24 Dimensions and Weights													
	Connection Size													
Symbol	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm		
	1/2	15	3/4	20	1	25	1-1/4	32	1-1/2	40	2	50		
L	3-1/4	83	3-1/2	89	4	102	4-3/4	121	6	152	7-1/4	184		
H ₁	1-3/4	45	2	51	2-1/2	64	3-1/4	83	3-1/2	89	4-1/2	115		
Н	7-3/4	197	8-1/2	216	9-5/8	245	11-1/4	286	13-1/2	343	16	407		
Wt, Ib (kg)	4	(1.8)	5-1/4	(2.4)	7-1/4	(3.3)	10-3/8	(4.7)	18	(8.2)	31-1/2	(14.3)		
Cv	1.5			2		3		1	-	7	1	0		

For Air, Water, Non-Corrosive and Non-Viscous Liquids

The GD-200/200H offers high capacity and highly accurate control with a large, cupped diaphragm for a long stroke. Compact and rugged, the GD-200's composition valve and stainless steel seat mean high performance over a long service life. Well suited to non-viscous liquid pressure reduction, the valve is widely applied in domestic water

applications, construction equipment, irrigation, tank car loading and industrial or commercial air conditioning. Upstream variations do not affect balanced pressure valve, and composition disc assures tight shutoff. Turndown ratio is 10:1, and sizes range from 2" through 6". ANSI Class IV Shutoff.

GD-200/2	GD-200/200H Specifications													
		Pressure					Min.	Materials						
Model Number	Inlet	Reduced psig (bar)			Application	Max. Temp.	Diff.		Main	Valve				
	psig (bar)	2" - 3" (50 - 80 mm)	4" - 6" (100 - 150 mm)	Color	Approation	°F (°C)	psig (bar)	Body	Valve	Seat	Diaphragm	Connection		
GD-200	150 (10)	7 - 36 (.48 - 2.5)	7 - 36 (.48 - 2.5)	Yellow	Liquid	175 (70)**	7 (10)	Ductile Iron	NBR	Stainless	NBR***	ANSI 150 lb. Flg.		
GD-200H	300 (20)	37 - 100 (2.5 - 6.9) *72 - 130 (4.9 - 8.8)	37 - 72 (2.5 - 5.0) *72 - 108 (4.9 - 7.3)	Black	Gas	175 (79)**	7 (.48)	ASTM A536		Steel AISI 304	NDK	ANSI 300 lb. Flg.		

*This spring range for GD-200H only.

**With Viton[®] diaphragm maximum temperature is 210°F (99°C).

***Viton optional.

GD-200/200H Capacities—Air

scfm									m3/hr								
Inlet	Outlet	in							Inlet	Outlet	Connection Size mm						
mer	Outlet								mer	Outlet							
psig		2	2-1/2	3	4	5	6			bar	50	65	80	100	125	150	
15	8	216	377	485	917	1,011	1,456		1.03	0.55	366	641	824	1,557	1,718	2,473	
20	13	235	412	530	1,000	1,103	1,589		1.38	0.90	400	700	900	1,699	1,874	2,699	
20	7	305	534	686	1,296	1,429	2,058		1.00	0.48	518	907	1,166	2,202	2,428	3,497	
25	18	254	444	570	1,077	1,188	1,711		1.72	1.24	431	754	969	1,831	2,019	2,907	
20	7	374	655	842	1,591	1,755	2,527		1.72	0.48	636	1,113	1,431	2,703	2,981	4,293	
30	23	270	473	609	1,149	1,268	1,826		2.07	1.59	459	804	1,034	1,953	2,154	3,102	
00	7	440	770	990	1,870	2,063	2,970		2.07	0.48	748	1,308	1,682	3,178	3,505	5,047	
	32	321	561	722	1,363	1,503	2,165			2.21	545	954	1,226	2,316	2,554	3,678	
40	20	476	833	1,071	2,024	2,232	3,214		2.76	1.38	459	804	1,034	1,953	2,154	3,102	
	7 - 12	531	929	1,194	2,256	2,488	3,583			.4883	902	1,578	2,029	3,833	4,227	6,087	
	40	389	681	875	1,654	1,824	2,626			2.76	661	1,157	1,487	2,810	3,099	4,462	
50	30	527	922	1,185	2,239	2,469	3,555	3.45	2.07	809	1,416	1,820	3,438	3,792	5,461		
	7 - 17	628	1,099	1,413	2,668	2,943	4,238			.48 - 1.17	1,067	1,867	2,400	4,534	5,000	7,200	
	48	457	800	1,029	1,943	2,143	3,086	4.14	3.31	777	1,360	1,748	3,302	3,642	5,244		
60	35	628	1,099	1,413	2,669	2,944	4,239		2.41	895	1,566	2,014	3,803	4,195	6,041		
	7 - 22	725	1,269	1,631	3,081	3,398	4,893			.48 - 1.5	1,232	2,155	2,771	5,234	5,773	8,313	
	60	559	979	1,258	2,377	2,621	3,775	5.17	4.14	950	1,663	2,138	4,038	4,453	6,413		
75	45	754	1,319	1,696	3,204	3,534	5,089		3.10	1,067	1,867	2,401	4,535	5,001	7,202		
	7 - 30	870	1,523	1,959	3,699	4,080	5,876		.48 - 2.1	1,479	2,588	3,328	6,285	6,932	9,983		
	80	729	1,275	1,640	-	-	-	6.89	5.52	1,238	2,167	2,786	-	-	-		
100	60	980	1,715	2,205	4,166	4,594	6,616		4.14	1,281	2,241	2,882	5,444	6,004	8,646		
	10 - 42	1,113	1,948	2,504	4,730	5,217	7,513		.69 - 2.9	1,891	3,309	4,255	8,037	8,864	12,76		
	100	898	1,572	2,021	-	-	-	8.62	6.89	1,526	2,670	3,433	-	-	-		
125	70	1,206	2,111	2,714	5,317	5,864	8,444		5.17	1,665	2,914	3,747	7,077	7,806	11,24		
	13 - 55	1,356	2,372	3,050	5,762	6,355	9,151			.89 - 3.8	2,303	4,031	5,182	9,789	10,796	15,54	
	100	1,331	2,329	2,995	-	-	-			6.89	2,261	3,957	5,088	-	-	-	
150	80	1,517	2,655	3,414	-	_	-		10.34	5.52	2,049	3,586	4,610	-	_	-	
	15 - 67	1,598	2,797	3,596	6,793	7,492	10,788			1.03 - 4.6	2,715	4,752	6,110	11,541	12,729	18,32	
	100	1,772	3,100	3,986	-	-	-			6.89	3,010	5,268	6,773	-	-	-	
180	90	1,848	3,235	4,159	-	_	_		12.41	6.21	2,578	4,512	5,801	-	_	-	
	18 - 80	1,889	3,306	4,251	8,030	8,856	12,753			1.24 - 5.5	3,210	5,618	7,223	13,643	15,047	21,66	
200	100	2,044	3,577	4,598	—	—	—		13.79	6.89	3,472	6,077	7,813	-	—	_	
200	20 - 92	2,083	3,646	4,688	8,855	9,766	14,063		13.79	1.38 - 6.3	3,540	6,195	7,965	15,044	16,593	23,894	
250	25 - 100	2,569	4,495	5,779	10,917	12,041	17,338		17.24	1.72 - 6.9	4,364	7,637	9,819	18,548	20,457	29,45	
300	25 - 100	3,054	5,344	6,871	12,979	14,315	20,613		20.00	1.72 - 6.9	5,188	9,080	11,674	22,051	24,321	35,02	

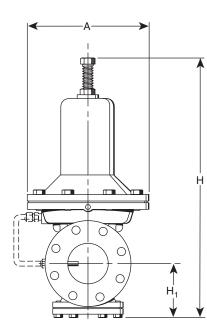
NOTE: Maximum pressure reduction ratio 10:1.

NOTES: Available in sizes below 2" upon request. Differential valve (GD-21) available upon request.

GD-200/200H

GD-200/200H Capacities—Water

	gpm													
ΔΡ	Connection Size													
Δr	in													
DP (psig)	2	2-1/2	3	4	5	6								
7	42	74	95	180	198	286								
10	51	89	114	215	237	342								
15	62	108	139	263	290	418								
20	72	125	161	304	335	483								
25	80	140*	180	340	375	540								
35	95*	166	213*	402*	444	639								
50	113	198	255	481	530*	764								
75	139	242	312	589	650	900*								
100	160	280	360	680	750	1,080								
125	179	313	402	760	839	1,207								
150	196	343	441	833	919	1,323								

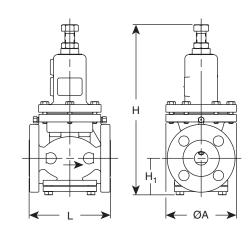

	l/min													
ΔP	Connection Size													
	mm													
DP (bar)	50	65	80	100	125	150								
0.5	160	280	361	681	751	1,082								
0.7	192	335	431	814	898	1,293								
1.0	235	411	528	997	1,100	1,583								
1.4	271	474	609	1,151	1,270	1,828								
1.7	303	530*	681	1,287	1,420	2,044								
2.4	360*	627	806*	1520*	1,680	2,419								
3.4	428	749	964	1,820	2,006*	2,891								
5.2	525	918	1,180	2,229	2,459	3,407*								
6.9	606	1,060	1,363	2,574	2,839	4,088								
8.6	677	1,185	1,524	2,878	3,174	4,571								
10.0	742	1,298	1,669	3,153	3,477	5,007								

*At flows greater than this, velocities will exceed 10 ft/sec and pipe erosion could occur. NOTE: Minimum flow is 1.3 gpm (4.9 l/min).

GD-20	D-200/200H Dimensions and Weights														
Si	ize	GD- Face-t	200 o-Face	GD-200H Face-to-Face		A		н		H ₁		Cv	We	ight	
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	1	lb	kg	
2	50	7-5/8	195	7-7/8	200	6	152	16-1/4	415	3-1/8	81	16	43	19.2	
2-1/2	65	10-5/8	270	10-7/8	277	7	178	21-1/2	550	4-1/16	105	28	88	40.0	
3	80	10-5/8	270	11-1/8	283	7-1/2	191	22-9/16	577	4-9/16	120	36	97	43.7	
4	100	12-1/8	308	12-3/4	342	9	229	25-1/6	637	5-1/4	135	68	154	70.0	
5	125	15	380	15-7/8	403	10	254	33	839	6-1/2	169	75	317	144.0	
6	150	15-3/4	400	16-5/8	422	11	280	35-9/16	908	7-1/2	194	108	381	173.0	

For a fully detailed certified drawing, refer to: GD-200 CD #2106

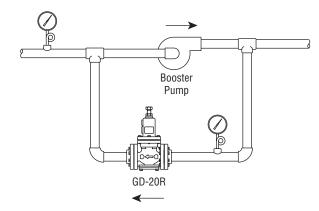
GD-200H CD #2107



For Water, Non-Corrosive and Non-Viscous Liquids

The GD-20R offers high capacity and highly accurate control with a large, cupped diaphragm for a long stroke. Compact and rugged, the GD-20R's composition valve and stainless steel seat mean high performance over a long service life. It is mainly used in heating and cooling equipment, and automatically regulates the pressure according to load fluctuations. It can be used in by-pass systems to prevent pump shutoff and to maintain a constant fluid pressure in the line. Turndown ratio is 10:1, and sizes range from 1/2" through 6".

For a fully detailed certified drawing, refer to CDY #1100.

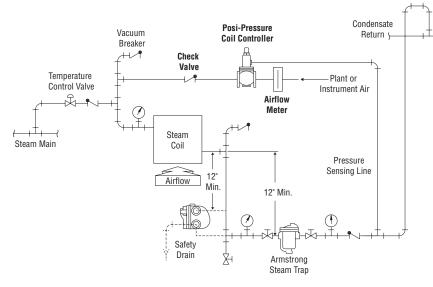

			gp	m				
			Co	nnectio	1 Size			
1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4
4	7	11	22	29	37	61	86	127
5	9	13	27	35	44	73	103	152
6	10	15	33	43	54	89	126	186
8*	14*	20	43*	55*	70	115	163	240
11	19	28*	60	78	99*	163*	230*	339
13	23	35	74	95	121	199	281	416*
15	27	40	85	110	140	230	325	480
	4 5 6 8* 11 13	4 7 5 9 6 10 8* 14* 11 19 13 23	4 7 11 5 9 13 6 10 15 8* 14* 20 11 19 28* 13 23 35	Co 1/2 3/4 1 1-1/4 4 7 11 22 5 9 13 27 6 10 15 33 8* 14* 20 43* 11 19 28* 60 13 23 35 74	1/2 3/4 1 1-1/4 1-1/2 4 7 11 22 29 5 9 13 27 35 6 10 15 33 43 8* 14* 20 43* 55* 11 19 28* 60 78 13 23 35 74 95	Connection Size 1/2 3/4 1 1-1/4 1-1/2 2 4 7 11 22 29 37 5 9 13 27 35 44 6 10 15 33 43 54 8* 14* 20 43* 55* 70 11 19 28* 60 78 99* 13 23 35 74 95 121	Connection Size 1/2 3/4 1 1-1/4 1-1/2 2 2-1/2 4 7 11 22 29 37 61 5 9 13 27 35 44 73 6 10 15 33 43 54 89 8* 14* 20 43* 55* 70 115 11 19 28* 60 78 99* 163* 13 23 35 74 95 121 199	Ormection Size 1/2 3/4 1 1-1/4 1-1/2 2 2-1/2 3 4 7 11 22 29 37 61 86 5 9 13 27 35 44 73 103 6 10 15 33 43 54 89 126 8* 14* 20 43* 55* 70 115 163 11 19 28* 60 78 99* 163* 230* 13 23 35 74 95 121 199 281

				l/m	in				
ΔΡ				Co	nnectio	1 Size			
DP (bar)	15	20	25	32	40	50	65	80	100
0.5	15	27	40	85	110	140	230	325	481
0.7	18	32	48	102	132	168	275	389	575
1.0	22	40	59	125	161	205	337	476	704
1.7	30*	53*	76	162*	208*	265	435	615	908
3.4	40	72	106*	228	294	374*	617*	870*	1,285
5.2	49	89	131	279	361	459	754	1,065	1,575*
6.9	57	102	151	322	416	530	871	1,230	1,817

*At flows greater than this, velocities will exceed 10 ft/sec and pipe erosion could occur.

GD-20R D	imensio	ns ai	nd Weig	hts																		
											Connecti	on Siz	e									
Symbol	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
	1/2	15	3/4	20	1	25	1-1/4	32	1-1/2	40	2	50	2-1/2	65	3	80	4	100	5	125	6	150
L	5-11/16	145	5-15/16	150	5-15/16	150	7-11/16	195	7-11/16	195	7-11/16	195	10-5/8	270	10-5/8	270	12-1/8	308	15-1/8	384	15-15/16	404
Н	11-5/8	296	11-5/8	296	12-1/2	317	15-9/16	395	15-9/16	395	16-5/16	415	21-7/8	555	22-15/16	582	25-3/8	645	33-7/16	849	36-1/8	918
H1	2-1/4	57	2-1/4	57	2-5/8	67	3	76	3	76	3-3/16	81	4-5/16	110	4-15/16	125	5-5/8	143	7-1/16	179	8-1/16	204
Wt., Ib (kg)	18 (8)	18 (8	3)	22 (1	0)	37 (1	7)	37 (1	7)	42 (19	9)	88 (4	0)	96 (44	l)	156 (7	71)	320 (14	45)	386 (17	75)
Cv	1.5		2.7		4		8		11		14		23		32		48		75		108	

GD-20R Speci	ifications									
Pressure	Set Pr	essure						Mat	erials	
	00111		Spring	Annliection	Max.	Min. Diff.				
Inlet psig (bar)	1/2" - 3" (15 - 80 mm)	4" - 6" (100 - 150 mm)	Color	Application	Temp. °F (°C)	psig (bar)	Main Valve	Valve Seat	Diaphragm	Connection
150 (10)	7 - 36 (.48 - 2.5) 37 - 100 (2.5 - 6.9)	7 - 36 (.48 - 2.5) 37 - 72 (2.5 - 5.0)	Yellow Black	Liquid	175 (79)	7 (.48)	NBR	Stainless Steel AISI 304	NBR	ANSI 150 lb. Flanged


Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

CD 200 Ca

Armstrong Posi-Pressure Control System

A Revolutionary Way to Provide Positive Condensate Drainage for Heat Exchange Equipment

Posi-Pressure Control System Suggested Installation

Forget About Flooded Heat Exchangers

The major cause of flooded heat exchangers is a lack of sufficient pressure differential across the steam trap under modulated steam conditions. With Armstrong's Posi-Pressure Control System, there is always a minimum preset differential pressure between the heat exchanger and the condensate return system. Even if the pressure in the condensate return changes, the Posi-Pressure Controller automatically adjusts to maintain the preset differential.

Forget About Water Hammer

When heat exchangers flood, steam and cold condensate frequently come in contact with each other. When this happens, the steam rapidly condenses, causing water hammer. This water hammer condition can cause damage to heat exchangers, piping and fittings. By eliminating heat exchanger flooding, the Posi-Pressure Control System will solve the problem.

Forget About Frozen Steam Coils

Most steam coils freeze because they are flooded with condensate. Costly—bulky—and high maintenance face and by-pass coil systems were created to solve this problem by maintaining a positive differential steam pressure. Now, with Armstrong's Posi-Pressure Control System, simple and inexpensive modulated control systems can do the same job. However, we must caution that proper steam coil design, steam trapping and venting practices are also required for freeze protection. If assistance is needed, Armstrong's Representatives are trained to analyze your total steam system and offer you solutions to your problems.

How Does the Posi-Pressure Control System Work?

A normal steam system may modulate into a vacuum to control temperature. A vacuum breaker is often installed to prevent this condition. Once the vacuum breaker opens, temperature control is accomplished by mixing the air with the steam. The steam/air mixture results in a lower temperature. However, even a vacuum breaker will not work if condensate

Posi-Pressure Control System Kit, consisting of controller, check valve, airflow meter

has to be elevated to an overhead return, or if the return system is pressurized.

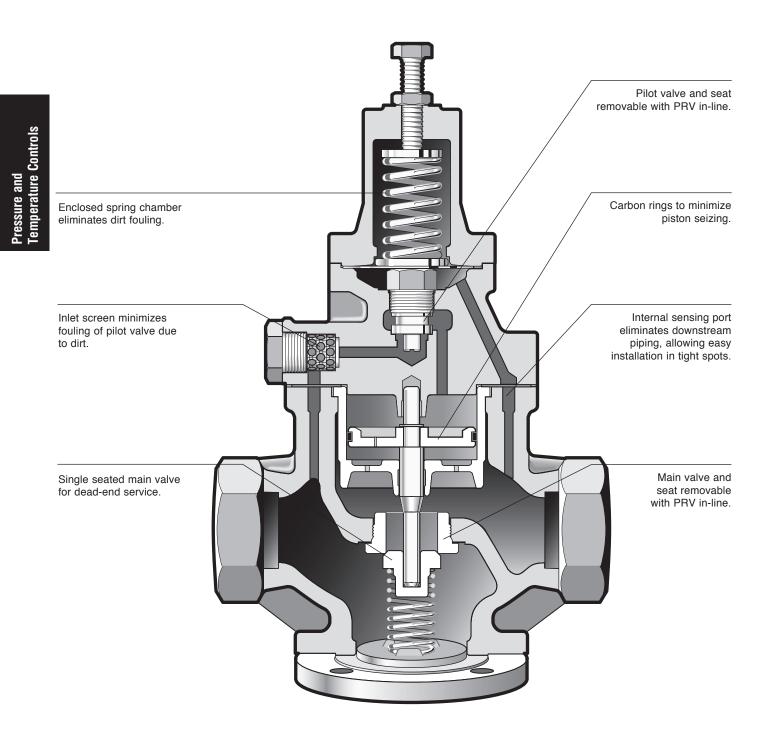
The Posi-Pressure Control System acts as a vacuum breaker. Instead of introducing air at atmospheric pressure, the controller injects air at an elevated pressure into the heat exchanger. The user presets the level of elevated air pressure at the time of installation. Rather than a specific pressure, the controller maintains a specific differential pressure across the steam trap. Even if a steam trap fails or other causes change the condensate return pressure, the controller will sense this difference and maintain the preset differential.

How Much Air Will Be Used?

The Posi-Pressure Control System uses very little air. The amount depends upon the size of the steam trap selected. Air usage can vary from as little as 10 SCFH to 90 SCFH or more on large systems. To put this in perspective, a 27 SCFH parcel of air amounts to a 3-foot cube in one hour! Once the initial air is introduced, only the leakage through the large vent bucket in the steam trap must be added. This air volume is so low that it is practically undetectable in a deaerator.

Are There Any Other Advantages?

Yes! It is generally recommended that float and thermostatic traps be used on modulated steam systems because they drain better when there is no motive pressure other than the static head of condensate. With a positive pressure always being maintained by the Posi-Pressure Control System, an inverted bucket steam trap with its inherent longer life expectancy can, and must, be used. Since air is injected at a positive pressure, carbon dioxide (the real cause of corrosion) is diluted and swept clear of the heat exchanger.


For a fully detailed certified drawing, refer to CDY #1041.

For Steam, Air and Non-Corrosive Gas Service

This type of PRV incorporates two valves—a pilot and main valve—in one unit. The pilot valve has a design similar to the direct acting valve. The discharge pressure from the pilot valve is transmitted on top of a piston which opens the main valve. This design makes use of inlet pressure

in opening a larger main valve than could otherwise be opened directly. As a result, there is a greater capacity per line size and greater accuracy $(\pm 5\%)$ than with the direct acting valve.

For Steam, Air and Non-Corrosive Gas

The GP-1000 Series valves are pilot-controlled for accurate regulation of pressure under wide-ranging flow. Internal pilot design eliminates external components and piping.

Internally piloted GP Series valves are capable of larger capacity and greater accuracy than direct acting valves.

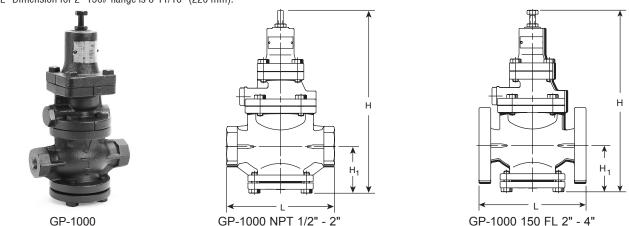
Completely supported by piping, lightweight GP Series valves install easily with NPT or flanged connections. A stainless steel diaphragm, hardened stainless steel working parts and integral removable strainer team up to provide

high performance over a long, trouble-free service life. Valves are equipped with a single seated main valve, piston valve rings for longer life and an external adjusting screw with locking nut. All working parts are renewable in-line. ANSI Class IV Shutoff.

For a fully detailed certified drawing, refer to list below.GP-1000 NPTCD #2104GP-1000 FlangedCD #2105GP-1000 SS/ASCDY #1081

GP-1000											
Model	Pre	ssure	Spring		Maximum	Minimum Diff.		Main Valve/			
Number	Inlet psig (bar)	Reduced psig (bar)	Color	Application	Temp. °F (°C)	psig (bar)	Body	Valve Seat	Pilot Valve/Seat	Piston/Cylinder	Diaphragm
NPT	15 - 250	5 - 125 (.34 - 8.6)	Black							Stainless Steel AISI	
GP-1000	(1 - 17)	125 - 200 (8.6 - 13.8)	Green	Steam	450 (232)			Stainless Steel AISI 420	Stainless Steel AISI 403/420	420/Stainless Steel AISI 403	
150 ANSI GP- 1000	15 - 150 (1 - 10)	5 - 125 (.34 - 8.6)					Ductile Iron ASTM A536				
NPT GP-1000A	15 - 150 (1 - 10)	5 - 125 (.34 - 8.6)	Disale	Air & Gas	7 (.48)			Stainless Steel AIS	51 420/Brass w/NBR	Bronze/Bronze ASTM C36000	Stainless Steel AISI 301
150 ANSI GP-1000A	15 - 150 (1 - 10)	5 - 125 (.34 - 8.6)	Black		(80)						
GP-1000SS* GP-1000AS*	15 - 150 (1 - 10)	5 - 125 (.34 - 8.6)		Steam	450 (232)		Stainless Steel AISI 304	Stainless Steel AISI 420	Stainless Steel AISI 403/420	Stainless Steel AISI 420/Stainless Steel AISI 403	

NOTES: Sizes 2" (50 mm) and below are NPT connections. Sizes 2" (50 mm) and larger are flanged connections. Turndown ratio for GP-1000 20:1.


*GP-1000SS/GP-1000AS are available in 1/2" - 2" only and are flanged with NPT companion flanges.

GP-1000, GP-1000A, GP-1000SS, GP-1000AS Dimensions and Weights

									Conne	ction	Size							
Symbol	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
	1/2	15	3/4	20	1	25	1-1/4	32	1-1/2	40	2*	50	2-1/2	65	3	80	4	100
L	5-7/8	150	6-1/8	155	6-5/16	160	7-1/2	190	7-1/2	190	8-11/16	220	9-5/8	245	11-3/8	290	13	330
Н	11-1/4	285	11-1/4	285	11-7/8	300	12-3/4	323	12-3/4	323	13-5/8	347	14	357	15-7/8	404	17-3/4	450
H ₁	2-1/2	64	2-1/2	64	2-5/8	67	3-1/4	82	3-1/4	82	3-11/16	93	4	100	4-13/16	122	5-9/16	144
Wt, Ib (kg)	15-1/2	2 (7)	15-1/2	2 (7)	19 (8	.5)	25-1/2	(12)	27-1/2 (12.5)	40 (1	8)	66 (3	30)	77 (3	35)	116	(53)
Cv	1		2.3	3	4		6.5)	9		16		25	5	36		64	1

NOTES: GP-1000 is 1/2"-2" (20-50 mm) NPT, 2"- 4" (50-100 mm) ANSI 150 lb flanged.

* "L" Dimension for 2" 150# flange is 8-11/16" (220 mm).

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

291

^oressure and

emperature Controls

Capacities for Steam, Air and Non-Corrosive Gas

00 4000	A 'I' Al
	L'anacities—Steam
	Capacities—Steam

	1				lb/hr					
Inlet	Outlet					Connection Siz	e			
mer	Outlet					in				
p	isig	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4
C _V I	Factor	1	2.3	4	6.5	9	16	25	36	64
15	8	40	93	161	261	362	644	1,005	1,448	2,574
15	5	47	107	187	303	420	747	1,167	1,680	2,987
20	13	44	101	176	285	395	702	1,097	1,580	2,809
20	5	60	138	240	390	540	960	1,500	2,160	3,839
30	23	50	116	202	328	454	807	1,261	1,816	3,228
30	5 - 7	76	176	306	497	688	1,223	1,911	2,752	4,892
	33	56	129	225	365	506	900	1,406	2,024	3,598
40	25	79	182	316	514	711	1,264	1,976	2,845	5,057
	5 - 12	94	215	374	608	842	1,497	2,338	3,367	5,986
	42	65	151	262	425	589	1,047	1,636	2,356	4,188
50	30	98	226	393	638	884	1,572	2,456	3,536	6,287
	5 - 17	111	254	443	719	996	1,770	2,766	3,983	7,081
	63	94	216	376	612	847	1,506	2,353	3,388	6,024
75	45	141	323	562	914	1,265	2,249	3,515	5,061	8,998
	5 - 30	153	353	614	997	1,380	2,454	3,835	5,522	9,817
	85	119	274	476	774	1,072	1,905	2,977	4,287	7,622
100	70	162	374	650	1,056	1,462	2,599	4,061	5,847	10,39
	5 - 42	196	451	785	1,275	1,765	3,138	4,903	7,061	12,55
	106	148	340	591	960	1,329	2,363	3,693	5,318	9,454
125	100	167	385	670	1,089	1,507	2,680	4,187	6,029	10,71
120	75	225	517	900	1,462	2,024	3,598	5,623	8,097	14,394
	7 - 55	239	549	956	1,553	2,150	3,822	5,972	8,600	15,28
	125	183	421	733	1,191	1,649	2,931	4,580	6,595	11,724
150	100	248	571	993	1,613	2,234	3,971	6,205	8,936	15,88
100	80	283	651	1,132	1,839	2,547	4,528	7,074	10,187	18,11
	8 - 67	282	648	1,127	1,831	2,535	4,506	7,041	10,139	18,02
	148	205	471	819	1,331	1,844	3,277	_	_	—
175	125	270	620	1,078	1,752	2,426	4,312		_	
	100	317	730	1,269	2,062	2,856	5,077		_	
	9 - 80	324	746	1,298	2,109	2,919	5,190			
	170	230	529	919	1,494	2,069	3,678	_	_	_
200	150	289	665	1,157	1,880	2,603	4,628	—		-
	125	342	787	1,369	2,225	3,081	5,478	—	_	-
	10 - 92	367	844	1,469	2,386	3,304	5,874		<u> </u>	
	191	258	594	1,034	1,680	2,326	4,135	-	-	-
225	175	308	708	1,231	2,000	2,769	4,923	-		-
	150	366	841	1,463	2,377	3,292	5,852	-		-
	12 - 105	410	943	1,640	2,664	3,689	6,558	<u> </u>		<u> </u>
	200	325	748	1,301	2,113	2,926	5,202	-		-
250	175	388	892	1,551	2,520	3,489	6,203	-	_	-
	150	435	1,001	1,741	2,829	3,916	6,963	—		-
	13 - 117	453	1,041	1,811	2,942	4,074	7,242			

NOTE: For air capacities scfm, multiply steam capacities lb/hr by 0.36.

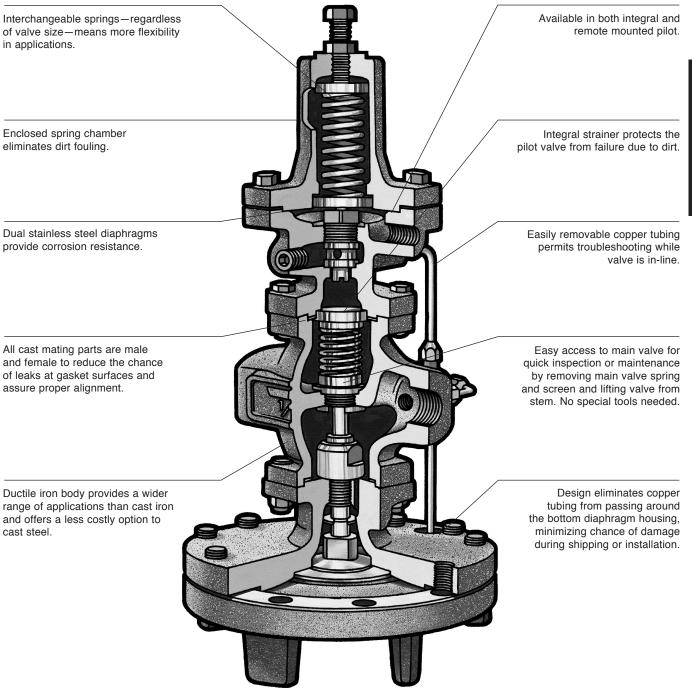
Capacities for Steam, Air and Non-Corrosive Gas

					kg/hr					
1.1.1	0.11.1					Connection Siz	e			
Inlet	Outlet					mm				
	bar	15	20	25	32	40	50	65	80	100
Cv	Factor	1	2.3	4	6.5	9	16	25	36	64
1 0 0	0.55	18	42	73	119	164	292	456	657	1,168
1.03	0.34	21	49	85	138	191	339	529	762	1,355
1.00	0.90	20	46	80	129	179	319	498	717	1,274
1.38	0.34	27	63	109	177	245	435	680	980	1,741
2.07	1.59	23	53	92	149	206	366	572	824	1,464
2.07	.3448	35	80	139	225	312	555	867	1,248	2,219
	2.28	26	59	102	166	230	408	638	918	1,632
2.76	1.72	36	82	143	233	323	574	896	1,290	2,294
	.3483	42	98	170	276	382	679	1,061	1,527	2,715
	2.90	30	68	119	193	267	475	742	1,069	1,900
3.45	2.07	45	102	178	290	401	713	1,114	1,604	2,852
	.34 - 1.17	50	115	201	326	452	803	1,255	1,807	3,212
	4.34	43	98	171	278	384	683	1,067	1,537	2,732
5.17	3.10	64	147	255	415	574	1,020	1,594	2,296	4,081
	.34 - 2.1	70	160	278	452	626	1,113	1,739	2,505	4,453
	5.86	54	124	216	351	486	864	1,350	1,945	3,457
6.89	4.83	74	169	295	479	663	1,179	1,842	2,652	4,715
	.34 - 2.9	89	205	356	578	801	1,423	2,224	3,203	5,694
	7.31	67	154	268	436	603	1,072	1,675	2,412	4,288
8.62	6.89	76	175	304	494	684	1,215	1,899	2,735	4,862
0.02	5.17	102	235	408	663	918	1,632	2,550	3,673	6,529
	.48 - 3.7	108	249	433	704	975	1,734	2,709	3,901	6,935
	8.62	83	191	332	540	748	1,330	2,077	2,991	5,318
10.00	6.89	113	259	450	732	1,013	1,801	2,815	4,053	7,206
10.00	5.52	128	295	513	834	1,155	2,054	3,209	4,621	8,215
	.55 - 4.6	128	294	511	830	1,150	2,044	3,194	4,599	8,176
	10.20	93	214	372	604	836	1,487		_	
12.07	8.62	122	281	489	795	1,100	1,956	_	_	
12.07	6.89	144	331	576	936	1,295	2,303		_	_
	.62 - 5.5	147	338	589	956	1,324	2,354			
	11.72	104	240	417	678	938	1,668		_	
13.79	10.34	131	302	525	853	1,181	2,099	_	_	_
10.13	8.62	155	357	621	1,009	1,398	2,485	_	_	_
	.68 - 6.3	167	383	666	1,082	1,499	2,665		<u> </u>	
	13.17	117	270	469	762	1,055	1,876	_	_	_
15.51	12.07	140	321	558	907	1,256	2,233	_	_	—
13.31	10.34	166	382	664	1,078	1,493	2,654	_		—
	.82 - 7.24	186	428	744	1,209	1,673	2,975			
	13.79	147	339	590	959	1,327	2,360	_	_	—
17.24	12.07	176	404	703	1,143	1,583	2,814	_	_	—
11.24	10.34	197	454	790	1,283	1,776	3,158	—	_	—
	.89 - 8.06	205	472	821	1,335	1,848	3,285	l		_

Pressure and Temperature Controls

For air capacities m^3/hr , multiply steam capacities kg/hr by 1.35.

294


Externally Piloted

For Steam Service

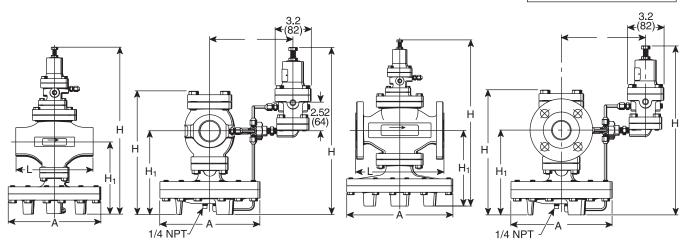
This type is similar to the internally piloted piston-operated valve in that a pilot and main valve are utilized. However, double diaphragms replace the piston. This increased diaphragm area can open a larger main valve, allowing a greater capacity per line size than the internally piloted piston-operated valve. In addition, the diaphragms are more

sensitive to pressure changes, which results in accuracy of $\pm 1\%$. This greater accuracy is due to the positioning of the sensing line downstream, where there is less turbulence. This valve also offers the flexibility to use different types of pilot valves (i.e., pressure, temperature, air loaded, solenoid or combination).

The GP-2000 is a high performance, externally piloted reducing valve for large capacity requirements. Typical use is on intermittent service, including applications such as heat exchangers, steam coils, rotating dryers, process equipment and heating systems. With a 20:1 rangeability and high C_v , the GP-2000 is reliable and accurate (+/-1% of pressure set point from 5% to 100% of flow) over a long, trouble-free service life. Hardened stainless steel working parts

are renewable in-line. Single seated for dead-end service. Available with both NPT (1/2" - 2") and flanged connections in 1/2" - 6" sizes. ANSI Class IV Shutoff.

For a fully detailed certified drawing, refer to:GP-2000CDY #1008GP-2000 FlangedCDY #1007

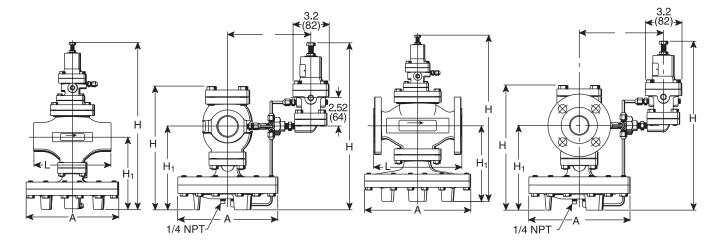

GP-2000 Sp	ecifications								•	
		Reduced		Maximum	Minimum			Materials		
Application	Inlet Pressure psig (bar)	Pressure psig (bar)	Spring Color	Temperature °F (°C)	Differential psig (bar)	Body	Main Valve/Seat	Pilot Valve/Seat	Diaphragm	Color
Steam	NPT 15 - 300 (1 - 20) 15 - 185 (1 - 13) 150 lb. Flanged 15 - 300 (1 - 20) 300 lb. Flanged	*1.5 - 3 (.10 - .21) 3 - 21 (.21 - 1.4) 15 - 200 (1 - 13.8)	Yellow Yellow Green	450 (232)	7 (.48)	Ductile Iron ASTM A536	Stainless St	teel AISI 420	Stainless Steel AISI 301	Dark Gray

*NOTE: When using this spring range, remove one (1) pilot diaphragm. Capacities are reduced by 1/2 of capacity chart when this spring is being used.

GP-2	000 I	Dimensi	ons a	and Wei	ghts																					
Siz	20		Fa	ace-to-Fa	ice "I	"		٨		E		H Integ	wal	H Rem	oto	H1		ц				We	eight	t		
31/	1C	NPT	-	150	#	300	#	A		Г		п шеі	jiai	n neili	ULE	п ₁		H ₂		N	PT	15	0#	30	0#	Cv*
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	5-15/16	150	5-9/16	141	5-3/4	147	7-15/16	200	6-7/8	176	15-3/4	398	14-1/4	362	6-3/4	170	9-5/8	244	34	14	36	15	42	19	5.0
3/4	20	5-15/16	150	5-1/2	140	5-3/4	147	7-15/16	200	6-7/8	176	15-3/4	398	14-1/4	362	6-3/4	170	9-5/8	244	34	14	36	15	42	19	7.2
1	25	6-5/16	160	5-3/4	147	6-1/4	159	8-15/16	226	7-1/16	179	15-15/16	404	14-7/16	367	6-15/16	175	10	254	44	19	48	20	54	23	10.9
1-1/4	32	7-1/8	180	6-1/2	166	7-1/16	179	8-15/16	226	7-7/16	188	17-1/8	434	15-1/8	384	7-5/8	192	11-1/8	283	51	22	53	22	59	25	14.3
1-1/2	40	7-1/8	180	7-7/16	189	7-15/16	202	8-15/16	226	7-7/16	188	17-1/8	434	15-1/8	384	7-5/8	192	11-1/8	283	51	22	55	23	61	26	18.8
2	50	9-1/8	230	8-9/16	217	9-1/8	232	10-15/16	276	7-11/16	195	19-5/8	498	16	406	8-1/2	216	12-5/8	321	75	33	81	36	84	36	32
2-1/2	65	-	-	10-15/16	278	11-1/2	292	13-13/16	352	8-5/16	211	21-3/4	552	17-5/16	440	9-13/16	251	14-3/4	375	-	-	142	65	150	65	60
3	80	-	-	11-3/4	298	12-7/16	315	13-13/16	352	8-3/4	222	22-5/8	575	17-15/16	456	10-7/16	264	15-3/4	400	-	-	155	69	166	72	78
4	100	-	-	13-1/2	343	14-1/8	359	15-13/16	401	9-7/16	239	25-15/16	658	20-1/8	511	12-5/8	321	19-1/4	489	-	-	247	112	264	119	120
6	150	-	-	18-1/8	460	19	483	19-3/4	502	-	-	31-3/4	806	-	-	16-1/4	414	26-1/2	673	-	_	507	230	553	252	250

*50% reduced port available for sizes 1/2" - 4". The C_v value should be divided by 2 to get reduced port C_v.

The GP-2000L is a high performance, externally piloted reducing valve for large capacity and low inlet pressure requirements. The GP-2000L is reliable and accurate (+/-1% of pressure set point from 5% to 100% of flow) over a long, trouble-free service life. Hardened stainless steel working

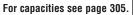

parts are renewable in-line. Single seated for dead-end service. Available with both NPT (1/2" - 2") and flanged connections in 1/2" - 4" sizes. ANSI Class IV Shutoff.

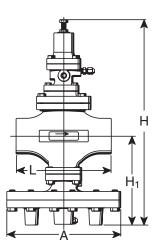
GP-2000L Sp	ecifications									
	Inlet	Reduced	0	Maximum	Minimum			Materials		
Application	Pressure psig (bar)	Pressure psig (bar)	Spring Color	Temperature °F (C)	Differential psig (bar)	Body	Main Valve/ Seat	Pilot Valve/ Seat	Diaphragm	Color
Steam	5 - 15 (.3 - 1)	2 - 12 (.138)	Yellow	450 (232)	3 (.21)	Ductile Iron ASTM A536	Stainless St	eel AISI 420	Stainless Steel AISI 301	Dark Gray

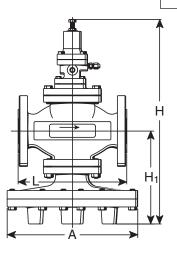
GP-2	000L	Dimens	sions	and We	ights		-																			
			Fa	ice-to-Fa	ace "	L"				E		Li Into	urol.	H Rem	oło	и		ш				We	eight	t		
Siz	26	NPT		150	#	300	#	A		г		H Inte	jrai		ule	H ₁		H ₂		Ν	PT	15	0#	30	0#	C _V *
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	5-15/16	150	5-9/16	141	5-3/4	147	7-15/16	200	6-7/8	176	15-3/4	398	14-1/4	362	6-3/4	170	9-5/8	244	34	14	36	15	42	19	5.0
3/4	20	5-15/16	150	5-1/2	140	5-3/4	147	7-15/16	200	6-7/8	176	15-3/4	398	14-1/4	362	6-3/4	170	9-5/8	244	34	14	36	15	42	19	7.2
1	25	6-5/16	160	5-3/4	147	6-1/4	159	8-15/16	226	7-1/16	179	15-15/16	404	14-7/16	367	6-15/16	175	10	254	44	19	48	20	54	23	10.9
1-1/4	32	7-1/8	180	6-1/2	166	7-1/16	179	8-15/16	226	7-7/16	188	17-1/8	434	15-1/8	384	7-5/8	192	11-1/8	283	51	22	53	22	59	25	14.3
1-1/2	40	7-1/8	180	7-7/16	189	7-15/16	202	8-15/16	226	7-7/16	188	17-1/8	434	15-1/8	384	7-5/8	192	11-1/8	283	51	22	55	23	61	26	18.8
2	50	9-1/8	230	8-9/16	217	9-1/8	232	10-15/16	276	7-11/16	195	19-5/8	498	16	406	8-1/2	216	12-5/8	321	75	33	81	36	84	36	32
2-1/2	65	-	-	10-15/16	278	11-1/2	292	13-13/16	352	8-5/16	211	21-3/4	552	17-5/16	440	9-13/16	251	14-3/4	375	-	-	142	65	150	65	60
3	80	-	-	11-3/4	298	12-7/16	315	13-13/16	352	8-3/4	222	22-5/8	575	17-15/16	456	10-7/16	264	15-3/4	400	-	-	155	69	166	72	78
4	100	-	_	13-1/2	343	14-1/8	359	15-13/16	401	9-7/16	239	25-15/16	658	20-1/8	511	12-5/8	321	19-1/4	489	-	-	247	112	264	119	120

*50% reduced port available for sizes 1/2" - 4". The C_v value should be divided by 2 to get reduced port C_v.

For capacities see page 315.


The GP-2000CS is a high performance, externally piloted reducing valve for large capacity requirements. Typical use is on intermittent service, including applications such as heat exchangers, steam coils, rotating dryers, process equipment and heating systems. With a 20:1 rangeability and high C_V , the GP-2000CS is reliable and accurate (+/-1% of pressure set point from 5% to 100% of flow) over a long, trouble-free service life. Stellited stainless steel working


parts are renewable in-line. Single seated for dead-end service. Available with both NPT (1/2" - 2") and flanged connections in 2" - 4" sizes.


For a fully detailed certified drawing, refer to:GP-2000CDY #1008GP-2000 FlangedCDY #1007

GP-2000GP-20	000CS Specificatio	ons								
	Inlet Pressure	Reduced	Spring	Maximum	Minimum			Materials		
Application	psig (bar)	Pressure psig (bar)	Color	Temperature °F (°C)	Differential psig (bar)	Body	Main Valve/Seat	Pilot Valve/Seat	Diaphragm	Color
	NPT 15 - 450 (1 - 31)	3 - 21 (.21 - 1.4)	Yellow			Carbon	Stainless			
Steam	150 lb Flanged 15 - 140 (1 - 9.6)	15 - 200 (1 - 13.6)	Green	600°F (315°C)	7 (.48)	Steel WCB ASTM216	Steel 304 Stainless Steel	420 Stainless Steel	Stainless Steel AISI 301	Silver
	300 lb Flanged 15 - 450 (1 - 31)	190 - 300 (13.1 - 20.6)	Brown			A216M-08	Stellite			

GP-20	DOOCS	Dimens	ions	and Weigh	its																			
Si	70			L				А		F		Н		H1		На				W	eight			
	26	NP1		150#		300	#	~		· ·		Integr	al	ריי ן		H ₂		NF	PΤ	15	0#	30	0#	C _v
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	5-15/16	150	-	-	_	-	7-15/16	200	6-7/8	176	15-3/4	398	6-3/4	170	9-5/8	244	35	16	-	-	-	-	5.0
3/4	20	5-15/16	150	-	-	-	-	7-15/16	200	6-7/8	176	15-3/4	398	6-3/4	170	9-5/8	244	35	16	-	-	_	-	7.2
1	25	6-5/16	160	-	-	-	-	8-15/16	226	7-1/16	179	15-15/16	404	6-15/16	175	10	254	49	22	-	-	_	-	10.9
1-1/4	32	7-1/8	180	-	-	-	-	8-15/16	226	7-7/16	188	17-1/8	434	7-5/8	192	11-1/8	283	53	24	-	-	_	-	14.3
1-1/2	40	7-1/8	180	-	-	-	-	8-15/16	226	7-7/16	188	17-1/8	434	7-5/8	192	11-1/8	283	53	24	-	-	_	-	18.8
2	50	9-1/8	230	8-9/16	217	9-1/8	232	10-15/16	276	7-11/16	195	19-5/8	498	8-1/2	216	12-5/8	321	62	37	88	40	92	42	32
2-1/2	65	-	-	10-15/16	278	11-1/2	292	13-13/16	352	8-5/16	211	21-3/4	552	9-13/16	251	14-3/4	375	-	-	159	72	168	76	60
3	80	-	_	11-3/4	298	12-7/16	315	13-13/16	352	8-3/4	222	22-5/8	575	10-7/16	264	15-3/4	400	-	-	174	79	185	84	78
4	100	-	_	13-1/2	343	14-1/8	359	15-13/16	401	9-7/16	239	25-15/16	658	12-5/8	321	19-1/4	489	-	-	276	125	293	133	120

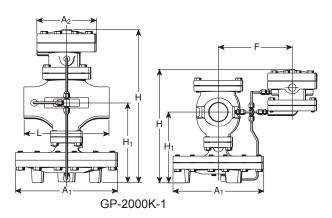
GP-2000K-1/GP-2000K-3/GP-2000K-6

Air Loaded Valves for Steam

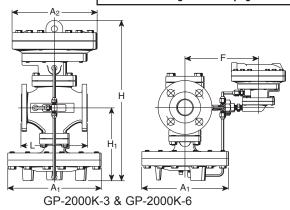
A high performance externally air piloted pressure reducing valve, the GP-2000K-1/GP-2000K-3/GP-2000K-6 is an ideal choice when set point changes are frequent and access to the PRV is difficult. The valve comes totally assembled and requires no field installation except downstream sensing line and air line connection. High Cv, 20:1 turndown ratio and accurate control ±1% of pressure set point from 5% to 100% of flow. A rugged ductile iron body, hardened stainless steel working parts, double stainless steel diaphragms and in-line repairability add up to reliability on the job. Single seated for dead-end service.

For a fully detailed certified drawing, refer to: **GP-2000K** CDY #1014 GP-2000K Flanged CDY #1015

GP-200	0K-1, GI	-2000K-	·3, GP-2	000K-6 \	Veights			
Si	70			Weight,	lb (kg)†			
31	26	N	PT	15	0#	30	0#	C _v
in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	34	16	36	15	42	19	5.0
3/4	20	34	16	36	15	42	19	7.2
1	25	44	20	48	20	54	23	10.9
1-1/4	32	51	23	53	22	59	25	14.3
1-1/2	40	51	23	55	23	61	26	18.8
2	50	75	34	81	36	84	36	32
2-1/2	65	—	_	142	65	150	65	60
3	80		_	155	69	166	72	78
4	100		_	247	112	264	119	120
6	150		_	507	230	553	252	250


*50% reduced port available for sizes 1/2" - 4". The CV value should be divided by 2 to get reduced port CV.

[†] For GP-2000K-3 and GP-2000K-6 weights, add 7-1/4 lb. (3.3 kg).


	Inlet Pressure	Reduced Pressure psig	Max.	Minimum		IV	laterials		
Application	psig (bar)	(bar)	Temp. °F (°C)	Differential psig (bar)	Body	Main Valve/ Seat	Pilot Valve/ Seat	Diaphragm	Color
Steam	NPT 15 - 300 (1 - 20) 150 lb Flanged 15 - 185 (1 - 13) 300 lb Flanged 15 - 300 (1 - 20)	K-1 7 - 125 (.48 - 8.6) K-3 30 - 200 (2 - 13.8) K-6 45 - 200 (3.1 - 13.8)	450 (232)	7 (.48)	Ductile Iron ASTM A536	Stainles: AISI 4		Stainless Steel AISI 301	Dark Gray

GP-20	00K-1	, GP-200	OK-3,	GP-2000K	(-6 Dir	nensions													
Siz	70			Face-to-Fa	nce "L	"				E		H Inte	ral	H Rem	oto	H1		**4	
01/	10	NPT		150#	ŧ	300	#	A ₁				11 IIIIei	jiai	n nem	016	11		,	12
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
1/2	15	5-15/16	150	5-9/16	141	5-3/4	147	7-15/16	200	6-7/8	175	13-3/16	335	11-13/16	300	6-3/4	170	3-1/4	82
3/4	20	5-15/16	150	5-1/2	140	5-3/4	147	7-15/16	200	6-7/8	175	13-3/16	335	11-13/16	300	6-3/4	170	3-1/4	82
1	25	6-5/16	160	5-3/4	147	6-1/4	159	8-15/16	226	7-1/16	179	13-7/16	341	12	305	6-15/16	175	3-1/4	82
1-1/4	32	7-1/8	180	6-1/2	166	7-1/16	179	8-15/16	226	7-7/16	188	14-5/8	371	12-11/16	322	7-5/8	192	3-1/4	82
1-1/2	40	7-1/8	180	7-7/16	189	7-15/16	202	8-15/16	226	7-7/16	188	14-5/8	371	12-11/16	322	7-5/8	192	3-1/4	82
2	50	9-1/8	230	8-9/16	217	9-1/8	232	10-15/16	276	7-11/16	195	17-1/8	435	13-1/4	337	8-1/2	216	3-1/4	82
2-1/2	65	_	-	10-15/16	278	11-1/2	292	13-13/16	352	8-5/16	211	19-1/4	489	15-3/8	391	9-13/16	251	3-1/4	82
3	80	-	-	11-3/4	298	12-7/16	316	13-13/16	352	8-3/4	222	20-1/8	512	16-3/8	416	10-7/16	264	3-1/4	82
4	100	-	-	13-1/2	343	14-1/8	359	15-13/16	401	9-7/16	239	23-7/16	595	19-7/8	505	12-5/8	321	3-1/4	82
6	150	-	-	18-1/8	460	19	483	19-3/4	502	-	-	29-3/8	746	-	_	27-1/4	692	3-1/4	82

*For GP-2000K-3 and GP-2000K-6 add 1-1/4" (18 mm) to "H" dimension. **For GP-2000K-3 and GP-2000K-6, A2 dimension = 6-13/16" (172 mm).

For capacities see page 305. For air loading chart see page 301.

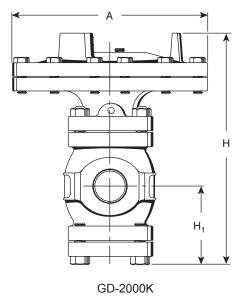
Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Armstrona®

Air Loaded Valves for Steam

The GD-2000K is an ideal choice when set point changes are frequent, access to the valve is difficult and steam quality is poor. The GD-2000K comes with either NPT or flanged connections for quick, easy installation. It also comes with a durable ductile iron body and features double stainless steel diaphragms and hardened stainless working parts, renewable in-line. High Cv and 10:1 turndown ratio. Single seated for dead-end service.

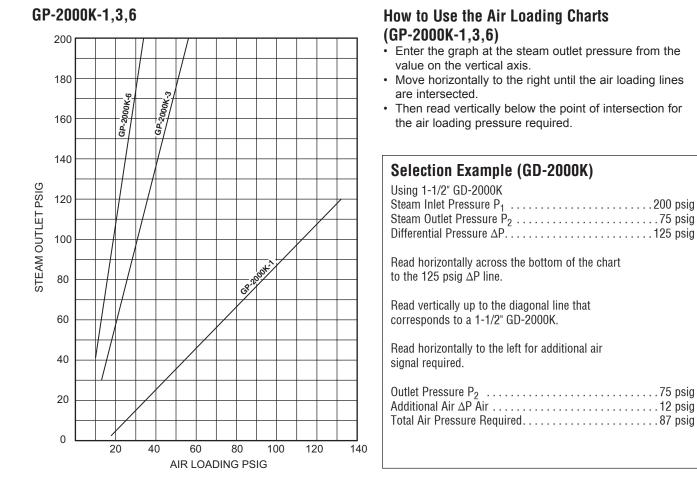
For a fully detailed certified drawing, refer to:GD-2000K NPTCDY #1020GD-2000K FlangedCDY #1021

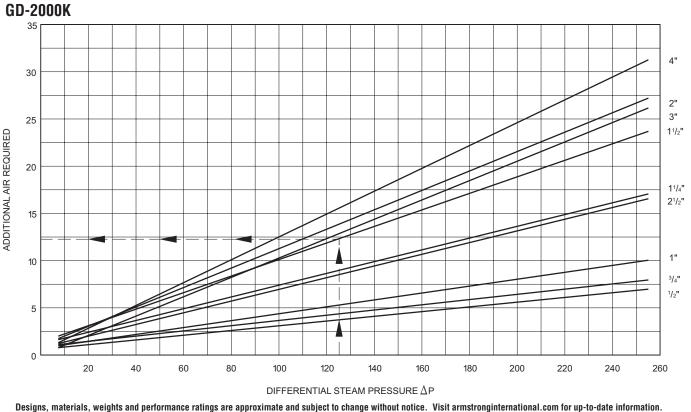

GD-2000K Spec	cifications							
	Inlet Pressure	Reduced	Maximum	Minimum		Materials		
Application	n psig (bar) Pressure Temperature Differential psig (bar) oF (°C) psig (bar)		Body	Main Valve/Seat	Diaphragm	Color		
	NPT 15 - 300 (1 - 20)							
Steam	150 lb Flanged 15 - 185 (1 - 13)	7 - 200 (.48 - 13.8)	450 (232)	7 (.48)	Ductile Iron ASTM A536	Stainless Steel AISI 420	Stainless Steel AISI 301	Dark Gray
	300 lb Flanged 15 - 300 (1 - 20)							

GD-2000K Dimensions and Weights

uD-20		Intensions		vergina																l ,
Siz	0			Face-to-	Face			u		н						We	eight			
312	e	NPT		150	ŧ	300	#	H ₁				A		N	PT	15	0#	30	0#	C _V *
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	5-15/16	150	_	_	_	_	2-7/8	74	9-5/8	244	7-15/16	200	27	13	—			_	5.0
3/4	20	5-15/16	150	_	_	_	_	2-7/8	74	9-5/8	244	7-15/16	200	27	13	—	—	—	_	7.2
1	25	6-5/16	160	—	—	_	_	3-1/16	76	10	251	8-15/16	226	35	17	—	—	_	—	10.9
1-1/4	32	7-1/8	180	_	_	_	_	3-1/2	90	11-1/8	282	8-15/16	226	43	20	_	—	_	_	14.3
1-1/2	40	7-1/8	180	_	_	_	_	3-1/2	90	11-1/8	282	8-15/16	226	43	20	_	_	_	_	18.8
2	50	9-1/8	230	8-9/16	217	9-1/8	232	4-1/2	114	12-5/8	319	10-15/16	276	66	31	72	34	73	34	32.0
2-1/2	65	_	_	10-15/16	278	11-1/2	292	4-3/4	122	14-3/4	373	13-13/16	352	—	—	135	62	136	62	60.0
3	80		_	11-3/4	298	12-7/16	315	5-1/2	140	15-3/4	399	13-13/16	352	—		146	67	152	69	78.0
4	100			13-1/2	343	14-1/8	359	6-1/2	167	19-1/4	488	15-13/16	401	—	—	230	105	240	109	120.0

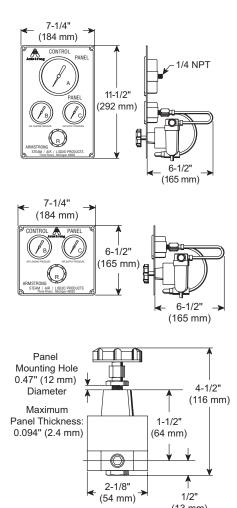
*50% reduced port available for sizes 1/2" - 4". The Cv value should be divided by 2 to get reduced port Cv.


For capacities see page 305. For air loading chart see page 301.

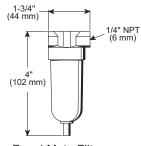


Air Loading Charts

Temperature Controls


Pressure and

armstronginternational.com



Armstrong Control Panels and Air Loaders are designed to provide the necessary air loading signal to control any air-operated pressure reducing valve. While designed specifically to control Armstrong pressure reducing valves such as the GP-2000K-1, 3 & 6, GD-2000K and GP-1000, these panels can remotely control other air-loaded valves. Panel is of rigid lightweight anodized aluminum for easy handling and installation. Control panel comes fully assembled with gauges suited to applications. Panel mate regulator and panel mate filter are standard on panels and are also available separately.

Panel Mate Regulator

(13 mm)

Panel Mate Filter

For a fully detailed certified drawing, refer to: "A" Panel CDY #1028 "Y" Panel CDY #1029

Materials of Construc	tion—Panel Mate—Filter	
Name of Part	Panel Mate	Filter
Body	Z	inc
Bottom plug	Brass	-
Pilot diaphragm	Nitrile	-
Main diaphragm	Nitrile	-
Pilot valve	Stainless steel	-
Main valve	Polycarbonate	-
Main valve seat	Teflon	-
Bowl	-	Zinc
Element	-	Porous polypropylene
Elastomers	Nitrile, neoprene and polyurethane	Nitrile and neoprene

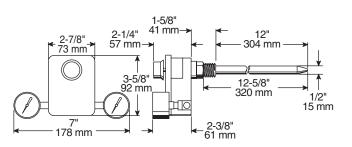
NOTE: Panel material is anodized aluminum.

Specifications—Control Panel

Stand	Standard Pressure Gauge Ranges								
Gauge	"A" Panel	"Y" Panel							
"A" psig (bar)	0 - 100 (0 - 7)	-							
"B" psig (bar)	0 - 100 (0-7)								
"C" psig (bar)	0 - 200	(0-14)							
Optional: Gauge "A" Ranges psig (bar)	0 - 30, 0-200, 0-300 (0-2, 0-14, 0-20)	_							
Optional: Gauge "B" and "C" Ranges psig (bar)	0-30, 0-100, 0 (0-2, 0-7, 0-								
Max. Inlet Air Pressure psig (bar)	200 (14)								
Max. Outlet Air Pressure psig (bar)	150 (10)								

Specifications—Panel Mate—Regulator and Filter								
	*Regi	ulator	Fil	ter				
	psig	bar	psig	bar				
Inlet pressure maximum	200	14	250	17				
Outlet pressure maximum	150	10	-	-				
Temperature maximum, °F (°C)	160	(71)	175	(79)				

*NOTE: Use a panel mate filter upstream of regulator to prevent fouling.

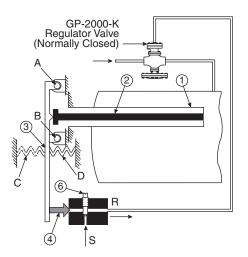


Pneumatic Temperature Pilot

A compact pneumatic temperature pilot with broad temperature ranges, the OBK-2000 can be remotely located away from the regulator valve, an advantage not available with a conventional capillary system.

Typical applications include instantaneous or storage tank water heaters, air make-up units and manufacturing process operations such as parts washing, die casting and plastic molding.

Capable of reverse-acting (heating) or direct-acting (cooling) operation, the OBK-2000 features a simple design with fewer moving parts for trouble-free operation. Other features include supply and control pressure gauges, a rugged cast brass housing, and precise and rapid response to temperature changes. Brass and stainless steel wells are available.


OBK-2000 Materials	
Name of Part	Material
Body	Brass
0-rings	Silicone Rubber/Buna "N"
Valve	Phos. Bronze
Valve Seat	Phos. Bronze

NOTE: Thermal wells available. 304 stainless steel or brass are standard materials. Other materials available upon request.

Reverse-Acting Operation—For Heating

During operation, a temperature change in the medium being controlled creates a change in the length of the sensitivity tube. An increase in temperature lengthens the sensitivity tube (1) and moves the invar rod (2) from the lever (3). The lever pivots at point B and is moved so the exhaust valve (4) is opened by the spring at (D). This lever action decreases the supply air at point (S) in the control line at point (R) and closes the regulator valve. A decrease in temperature shortens the sensitivity tube at point (1) and moves the invar rod against the lever point (3). The lever at this point moves against the spring at point (D) to close the exhaust valve at point (4). This lever action increases the pressure in the control line at point (R) and opens the valve.

The sensitivity adjustment screw at point (6) regulates the rate of flow of the supply air to the controller to a change in temperature. Turning the screw clockwise increases the sensitivity by reducing the flow and increasing the response time. Turning the screw counterclockwise decreases the sensitivity by increasing flow and reducing the response time. Valve closes on air failure, making it fail-safe.

Positions A and C show pivot point A and spring C when controller is direct acting.

OBK-2000 Specifications	
Dial adjustment range—°F (°C)	Standard—50 to 350 (10 to 177)
Maximum supply pressure (air) @ room temperature—psi (bar)	25 (2)
Air consumption (maximum)—SCIM (cm/s)	800 (218 - 3)
Maximum operating pressure—psi (bar)	250 (17)
Maximum operating temperature—°F (°C)	400 (204)
Temperature response—°F (°C)	0.5 (0.3)
Mounting—in (mm)	1/2 (15)
Air connections —in (mm)	1/8 (3)
Shipping weight—Ib (kg)	4 (1.8)
Sensitivity (adjustable)—psi (bar)	1/4 to 2-1/4 (0.02 to 0.16)
Maximum pressure on wells	
Stainless steel—psi (bar)	1,125 (79)
Brass—psi (bar)	525 (36)

Pressure and Temperature Controls

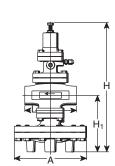
For Steam Back Pressure Regulation

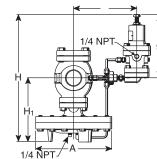
The GP-2000R is a high performance externally piloted throttling back pressure valve for large capacity applications. Typical applications would include those systems utilizing flash steam for low pressure heating or processes. The GP-2000R valves will function to maintain a constant upstream pressure. This valve is not a safety valve and should not be used for that purpose.

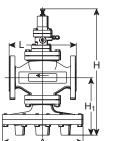
For a fully detailed certified drawing, refer to: **GP-2000R** Threaded CDY #1018 **GP-2000R Flanged** CDY #1019

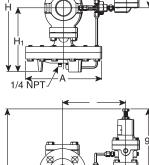
GP-2000R S	pecifications									
	Inlet Pressure	Relieving Pressure	Spring	Maximum	Minimum			Materials		
Application	psig (bar)	psig (bar)	Color	Temperature °F (°C)	Differential psig (bar)	Body	Main Valve/Seat	Pilot Valve/ Seat	Diaphragm	Color
	NPT 3 - 200 (.21 - 13.8)	3 - 21 (.21 - 1.4)	Yellow							
Steam	150 lb Flanged 3 - 185 (.21 - 13)	14 - 157 (1.0 - 11.0)	Green	450 (232)	3 (.21)*	Ductile Iron ASTM A536		ss Steel 420	Stainless Steel AISI 301	Dark Gray
	300 lb Flanged 3 - 200 (.21 - 13.8)	143 - 200 (10 - 13.8)	Brown							

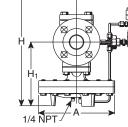
*If used for a 3-15 psig set point, outlet pressure must be 0 psig.


GP-2000R Dimensions Face-to-Face "L" A F Size H Integral H Remote H₁ NPT 150# 300# in mm in in mm in mm in mm mm in mm in mm in in mm mm 14-1/4 1/2 15 5-15/16 150 5-9/16 141 5-3/4 147 7-15/16 200 6-7/8 176 15-3/4 398 362 6-3/4 170 7-15/16 3/4 20 5-15/16 150 5-1/2 140 5-3/4 147 200 6-7/8 176 15-3/4 398 14-1/4 362 6-3/4 170 25 6-5/16 160 5-3/4 147 6-1/4 159 8-15/16 226 7-1/16 179 15-15/16 404 14-7/16 367 6-15/16 175 1 1-1/4 32 7-1/8 180 6-1/2 166 7-1/16 179 8-15/16 226 7-7/16 17-1/8 434 15-1/8 384 7-5/8 192 188 1-1/2 40 7-1/8 180 7-7/16 189 7-15/16 202 8-15/16 7-7/16 17-1/8 434 15-1/8 384 7-5/8 192 226 188 217 10-15/16 2 50 9-1/8 230 8-9/16 9-1/8 232 276 7-11/16 195 19-5/8 498 16 406 8-1/2 216 2-1/2 65 10-15/16 278 11-1/2 292 13-13/16 352 8-5/16 211 21-3/4 552 17-5/16 440 9-13/16 251 _ _ 13-<u>13/16</u> 3 80 11-3/4 298 12-7/16 316 352 8-3/4 222 22-5/8 575 17-15/16 456 10-7/16 264 _ _ 100 14-1/8 4 _ _ 13-1/2 343 359 15-13/16 401 9-7/16 239 25-15/16 658 20-1/8 511 12-5/8 321 6 150 18-1/8 460 19 483 19-3/4 502 31-3/4 806 26-1/2 673 _ _ ____ ____


GP-2000	R Weigh	its						
Siz	0			We	ight			
312	.c	N	PT	15	0#	30	0#	C _v *
in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	34	14	36	15	42	19	5
3/4	20	34	14	36	15	42	19	7.2
1	25	44	19	48	20	54	23	10.9
1-1/4	32	51	22	53	22	59	25	14.3
1-1/2	40	51	22	55	23	61	26	18.8
2	50	75	33	81	36	84	38	32
2-1/2	65	-	-	142	65	150	68	60
3	80	-	-	155	69	166	75	78
4	100	-	-	247	112	264	120	120
6	150	_	-	509	231	555	253	250


*50% reduced port available for sizes 1/2" - 4".


The C_v value should be divided by 2 to get reduced port C_v .


For capacities see page 305.

304

GP-2000, 2000K-1, 3 & 6, GD-2000K, GP-2000R, GP-2000CS

Capacities for Steam

GP-2000, GP	P-2000K-1, GI	P-2000K-3, G	P-2000K-6, (GD-2000K, GI	P-2000R, GP-		cities—Stear	n lb/hr			
Inlet	Outlet				IU/I	Connecti ir					
	sig	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	6
C _v F	actor	5	7.2	10.9	14.3	18.8	32	60	78	120	250
15	8	201	290	438	575	756	1,287	2,413	3,137	4,826	10,055
	3	250	361	546	716	942	1,603	3,005	3,907	6,010	12,521
20	13	219	316	478	628	825	1,404	2,633	3,423	5,267	10,972
	3	313	451	683	896	1,178	2,006	3,761	4,889	7,521	15,669
25		236	340	515	676	889	1,513	2,837	3,688	5,673	11,819
	3 - 5 23	339	489	740	971	1,276	2,172	4,073	5,295	8,146	16,972
30	3 - 7	252 382	363 550	550 833	721 1,093	948 1,437	1,614 2,446	3,026 4,586	3,934 5,962	6,052 9,172	12,609 19,109
	33	281	405	613	804	1,437	1,799	3,373	4,385	6,747	14,056
40	25	395	569	861	1,130	1,486	2,529	4,741	6,164	9,483	19,756
10	3 - 12	468	673	1,020	1,338	1,758	2,993	5,612	7,296	11,224	23,384
	42	327	471	713	936	1,230	2,094	3,927	5,105	7,853	16,361
50	30	491	707	1,071	1,405	1,847	3,143	5,894	7,662	11,788	24,557
	3 - 17	553	797	1,206	1,582	2,080	3,540	6,638	8,630	13,276	27,659
	51	373	537	814	1,067	1,403	2,389	4,479	5,823	8,958	18,662
60	45	471	679	1,028	1,348	1,773	3,017	5,657	7,355	11,315	23,572
60	35	586	843	1,277	1,675	2,202	3,748	7,027	9,135	14,053	29,278
	3 - 22	639	920	1,392	1,827	2,401	4,088	7,664	9,963	15,328	31,934
	63	471	678	1,026	1,346	1,769	3,012	5,647	7,341	11,295	23,530
75	55	593	854	1,292	1,696	2,229	3,794	7,114	9,249	14,229	29,643
15	45	703	1,012	1,532	2,010	2,643	4,499	8,435	10,966	16,871	35,148
	4 - 30	767	1,104	1,672	2,193	2,884	4,908	9,203	11,964	18,406	38,347
	85	595	857	1,298	1,703	2,239	3,811	7,145	9,289	14,291	29,773
100	75	751	1,081	1,636	2,147	2,822	4,804	9,007	11,709	18,014	37,529
100	60	914	1,316	1,992	2,614	3,436	5,849	10,967	14,257	21,934	45,696
	5 - 42	981	1,412	2,138	2,805	3,687	6,276	11,768	15,299	23,536	49,034
	106	739	1,064	1,610	2,112	2,777	4,727	8,863	11,522	17,725	36,928
125	100	837	1,206	1,825	2,395	3,149	5,359	10,048	13,063	20,097	41,869
	75	1,125	1,619	2,451	3,216	4,228	7,197	13,494	17,543	26,989	56,226
	7 - 55	1,194 881	1,720 1,269	2,604 1,922	3,416 2,521	4,491 3,314	7,644 5,641	14,333 10,577	18,633 13,751	28,666 21,155	59,722 44,072
150	127	1,241	1,787	2,705	3,549	4,666	7,943	14,893	19,360	29,785	62,052
150	8 - 67	1,241	2,028	3,070	4,027	4,000 5,295	9,012	16,898	21,968	33,796	70,409
	148	1,400	1,475	2,233	2,929	3,851	6,555	12,291	15,978	24,581	51,211
	125	1,348	1,940	2,938	3,854	5,067	8,624	16,170	21,021	32,341	67,376
175	100	1,587	2,285	3,459	4,537	5,965	10,154	19,038	24,750	38,076	79,325
	9 - 80	1,622	2,336	3,536	4,639	6,098	10,380	19,463	25,302	38,926	81,097
	170	1,149	1,655	2,506	3,287	4,322	7,356	13,792	17,930	27,585	57,468
	150	1,446	2,083	3,153	4,136	5,438	9,256	17,354	22,560	34,708	72,309
200	125	1,712	2,465	3,732	4,896	6,437	10,956	20,542	26,705	41,085	85,593
	10 - 92	1,836	2,643	4,002	5,250	6,902	11,748	22,028	28,637	44,056	91,784
	191	1,292	1,861	2,817	3,695	4,858	8,270	15,505	20,157	31,011	64,606
225	175	1,539	2,215	3,354	4,400	5,785	9,847	18,462	24,001	36,925	76,926
LLJ	150	1,829	2,633	3,986	5,230	6,876	11,703	21,944	28,527	43,887	91,431
	12 - 105	2,049	2,951	4,468	5,861	7,706	13,116	24,593	31,971	49,186	102,472
	200	1,626	2,341	3,544	4,649	6,112	10,404	19,508	25,360	39,015	81,282
250	175	1,938	2,791	4,226	5,544	7,288	12,406	23,261	30,239	46,521	96,919
	150	2,176	3,133	4,743	6,223	8,181	13,925	26,110	33,943	52,219	108,790
	13 - 117	2,263	3,259	4,934	6,473	8,510	14,484	27,158	35,306	54,316	113,159
075	200	2,042	2,941	4,452	5,841	7,679	13,070	24,507	31,859	49,014	102,112
275	175	2,299	3,311	5,012	6,575	8,644	14,714	27,588	35,864	55,176	114,950
	14 - 130 200	2,477 2,416	3,567 3,479	5,400 5,267	7,084 6,910	9,313 9,084	15,852 15,462	29,723 28,991	38,640 37,688	59,446 57,982	123,847 120,796
300	175	2,416	3,479 3,797	5,267 5,748	7,540	9,084 9,913	15,462	28,991 31,638	41,130	57,982 63,277	120,796
300	15 - 142	2,637	3,797	5,748 5,866	7,540	9,913	16,874	31,638	41,130 41,975	64,576	131,826
	248	2,656	3,825	5,000	7,695	9,987	17,000	31,864	41,975	63,728	134,334
	225	2,886	4,156	6,292	8,254	10,852	18,471	34,629	45,017	69,258	
350	200	3,095	4,150	6,748	8,853	11,639	19,811	37,135	48,276	74,270	_
	18 - 160	3,118	4,490	6,798	8,918	11,724	19,956	39,890	51,856	79,779	_
	248	3,702	5,331	8,071	10,588	13,921	23,695	44,415	57,740	88,830	
425	225	3,870	5,574	8,438	11,070	14,553	24,771	46,439	60,370	92,877	_
		4,000	5,578	8,719	11,439	15,038	25,595	48,096	62,525	96,192	

NOTE: Maximum pressure reduction 20:1, except for GD-2000K 10:1. Minimum pressure reduction is 85% of inlet pressure. For 50% reduced port capacities, divide the capacity by 2.

50% reduced port available for sizes 1/2" - 4".

GP-2000, 2000K-1, 3 & 6, GD-2000K, GP-2000R, GP-2000R, GP-2000CS

Capacities for Steam continued

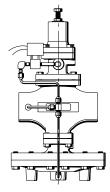
					kg,						
Inlet	Outlet						tion Size Im				
b	ar	15	20	25	32	40	50	65	80	100	150
	actor	5	7.2	10.9	14.3	18.8	32	60	78	120	250
1.03	0.55	91	131	199	261	343	584	1,095	1,423	2,189	4,56
1.05	0.21	114	164	248	325	427	727	1,363	1,772	2,726	5,67
1.38	0.90	100	143	217	285	374	637	1,194	1,553	2,389	4,97
1.30	0.21	142	205	310	407	534	910	1,706	2,218	3,412	7,10
1.72	1.24	107	154	234	307	403	686	1,287	1,673	2,573	5,36
1.72	.2134	154	222	336	440	579	985	1,848	2,402	3,695	7,69
2.07	1.59	114	165	249	327	430	732	1,373	1,784	2,745	5,71
2.07	.2148	173	250	378	496	652	1,109	2,080	2,704	4,161	8,66
	2.28	128	184	278	365	479	816	1,530	1,989	3,060	6,37
2.76	1.72	114	165	249	327	430	732	1,373	1,784	2,745	5,71
	.2183	173	250	378	496	652	1,109	2,080	2,704	4,161	8,66
	2.90	128	184	278	365	479	816	1,530	1,989	3,060	6,37
3.45	2.07	179	258	391	513	674	1,147	2,151	2,796	4,301	8,96
	.21 - 1.17	212	305	462	607	798	1,358	2,546	3,309	5,091	10,6
	3.52	148	214	324	425	558	950	1,781	2,315	3,562	7,42
4.14	3.10	148	214	324	425	558	950	1,781	2,315	3,562	7,42
	2.41	223	321	486	637	838	1,426	2,673	3,475	5,347	11,1
	.21 - 1.5	251	361	547	718	943	1,606	3,011	3,914	6,022	12,5
	4.34	213	307	465	611	803	1,366	2,562	3,330	5,123	10,6
5.17	3.79	269	387	586	769	1,011	1,721	3,227	4,195	6,454	13,4
0.17	3.10	319	459	695	912	1,199	2,041	3,826	4,974	7,653	15,9
	.27 - 2.1	348	501	758	995	1,308	2,226	4,175	5,427	8,349	17,3
	5.86	270	389	589	772	1,016	1,729	3,241	4,213	6,482	13,5
6.89	5.17	340	490	742	974	1,280	2,179	4,086	5,311	8,171	17,0
0.09	4.14	415	597	904	1,186	1,559	2,653	4,975	6,467	9,949	20,7
	.34 - 2.9	445	641	970	1,272	1,673	2,847	5,338	6,939	10,676	22,2
	7.31	335	482	730	958	1,260	2,144	4,020	5,226	8,040	16,7
8.62	6.89	380	547	828	1,086	1,428	2,431	4,558	5,925	9,116	18,9
0.02	5.17	510	735	1,112	1,459	1,918	3,265	6,121	7,957	12,242	25,5
	.48 - 3.7	542	780	1,181	1,550	2,037	3,467	6,502	8,452	13,003	27,0
	8.76	400	576	872	1,143	1,503	2,559	4,798	6,237	9,596	19,9
10.34	6.89	563	811	1,227	1,610	2,117	3,603	6,755	8,782	13,510	28,1
	.55 - 4.6	639	920	1,392	1,827	2,402	4,088	7,665	9,964	15,330	31,9
	10.20	465	669	1,013	1,329	1,747	2,973	5,575	7,247	11,150	23,2
10.07	8.62	611	880	1,332	1,748	2,298	3,912	7,335	9,535	14,670	30,5
12.07	6.89	720	1,036	1,569	2,058	2,706	4,606	8,636	11,226	17,271	35,9
	.62 - 5.5	736	1,059	1,604	2,104	2,766	4,709	8,828	11,477	17,657	36,7
	11.72	521	751	1,137	1,491	1,960	3,337	6,256	8,133	12,512	26,0
10.70	10.34	656	945	1,430	1,876	2,466	4,198	7,872	10,233	15,744	32,7
13.79	8.62	776	1,118	1,693	2,221	2,920	4,970	9,318	12,113	18,636	38,8
	.68 - 6.3	833	1,199	1,815	2,381	3,131	5,329	9,992	12,990	19,984	41,6
	13.17	586	844	1,278	1,676	2,204	3,751	7,033	9,143	14,066	29,3
15.54	12.07	698	1,005	1,521	1,996	2,624	4,466	8,374	10,887	16,749	34,8
15.51	10.34	829	1,194	1,808	2,372	3,119	5,309	9,954	12,940	19,907	41,4
	.82 - 7.24	930	1,339	2,027	2,659	3,495	5,950	11,155	14,502	22,311	46,4
	13.79	737	1,062	1,607	2,109	2,773	4,719	8,849	11,503	17,697	36,8
17.01	12.07	879	1,266	1,917	2,515	3,306	5,627	10,551	13,716	21,102	43,9
17.24	10.34	987	1,421	2,152	2,823	3,711	6,316	11,843	15,396	23,687	49,3
	.89 - 8.06	1,027	1,478	2,238	2,936	3,860	6,570	12,319	16,015	24,638	51,3
	13.79	926	1,334	2,019	2,649	3,483	5,929	11,116	14,451	22,233	46,3
18.96	12.07	1,043	1,502	2,273	2,982	3,921	6,674	12,514	16,268	25,028	52,1
	.96 - 8.96	1,124	1,618	2,449	3,213	4,224	7,191	13,482	17,527	26,965	56,1
	13.79	1,096	1,578	2,389	3,134	4,120	7,013	13,150	17,095	26,300	54,7
20.00	12.07	1,196	1,722	2,607	3,420	4,497	7,654	14,351	18,656	28,702	59,7
	1.03 - 9.79	1,220	1,758	2,661	3,491	4,589	7,811	14,646	19,040	29,292	61,0
	17.10	1,205	1,735	2,627	3,446	4,530	7,711	14,453	18,789	28,907	01,0
	15.51	1,309	1,885	2,854	3,744	4,922	8,379	14,668	20,419	31,415	
24.13	13.79	1,404	2,022	3,061	4,016	5,279	8,986	16,844	21,898	33,689	_
	1.24 - 11.02	1,414	2,022	3,083	4,010	5,318	9,052	18,094	23,521	36,187	_
	17.10	1,679	2,037	3,661	4,803	6,314	10,748	20,146	26,190	40,293	
29.30	15.51	1,079	2,410	3,827	4,003 5,021	6,601	11,236	20,140	20,190	40,293 42,129	_
20.00	1.52 - 13.4	1,814	2,520	3,955	5,021	6,821	11,230	21,004	27,303 28,361	42,129 43,632	

NOTE: Maximum pressure reduction 20:1, except for GD-2000K 10:1. Minimum pressure reduction is 85% of inlet pressure.

For 50% reduced port capacities, divide the capacity by 2.

50% reduced port available for sizes 15 - 100 mm.

GP-2000 On/Off—For Steam Service

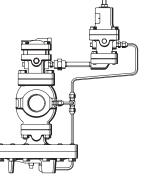

External Pilot Solenoid Operated Valves

The GP-2000 On/Off option allows for remote shutoff of pressure reducing valves. Automatic shutoff during power failures and shutoff based on set points of pressure, temperature or liquid levels of process fluids. This option is available as an accessory item or may be factory installed on any of the GP-2000 Series valves. The GP-2000 On/Off is designed for a maximum pressure of 150 psig and a maximum temperature of 366°F NEMA IV standard, coil: class H 110V standard. Available with normally open or normally closed solenoids.

Non-Electric Gradient Monitoring Option

(Between Water and Steam Pressure)

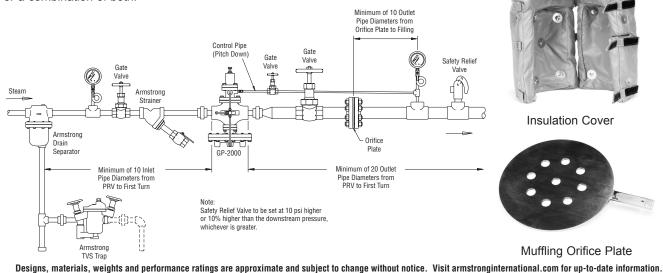
The GP-2000W1P provides a safe and dependable shutdown of steam when the water pressure falls or drops rapidly on a constant pressure, steam-to-water exchanger. Unlike a solenoid option that shuts the steam down when the water pressure drops below a pre-set point, the GP-2000W1P always maintains a constant steam pressure until water pressure drops to within 3 psig above the steam pressure. Lower water pressure will cause the steam pressure to fall, thereby maintaining a minimum 3 psig difference. This will allow the exchanger to produce hot water even when water pressure is low, and ensures that steam pressure will stay functional as long as water pressure is above 15 psig.


GP-2000, GP-2000CS, GP-2000R with On/Off

Noise Treatment

OSHA has established limits on the length of time any employee may be exposed to various sound levels. A sound level of 85 Dba or less is the acceptable standard for noise levels through a PRV in most applications. Certain facilities may require much less. Please consult Armstrong PRV Sizing Software or contact the local Armstrong factory representative for Dba levels for each application.

For Dba levels above 85 you can offer a 2" thick insulation cover for thermal conductivity and noise attenuation, a muffling orifice plate to reduce the noise through the PRV, or a combination of both.

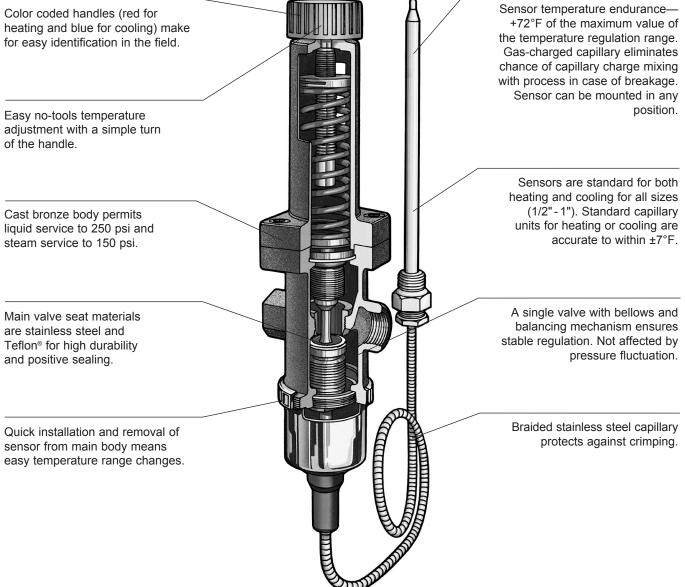


GP-2000W1P

A muffling orifice plate consists of a 1/4" thick stainless steel plate installed between mating ANSI flanges. The orifice plate is installed in the enlarged piping downstream of the pressure regulator. Each orifice plate is engineered for specific applications to maximize noise reduction without reducing regulator capacity.

Orifice plates for GP-2000 only.

307


308

Temperature Regulators

For Steam, Water and Non-Corrosive Liquid Service

Armstrong self-actuated temperature regulators are compact, high performance units that are simple in design and operation—and suitable for a wide variety of applications. Features including flexible mounting positions of the sensor, interchangeable capillaries and varied temperature ranges make installation, adjustment and maintenance quick and easy.

Temperature F	Regulator Valve Sel	ection					
If the Service Is	If Inlet Pressure is psig (bar)	Type of Control	Temperature Ratings °F (°C)	Temperature Accuracy °F (°C)	If Maximum Capacity Is Less Than	Look for Model	Find on Page
	5 to 150 (.34 to 10)	Self Contained Direct Acting	From 32 to 302 (0 to 150) 5 Ranges	±7 (±3) From set point	1,745 (792)	OB-30	304
Heating	5 to 15 (.34 to 1)	Self Contained	From 18 to 361	±2 (±1)	5,643 (2,565)	0B-2000L	308
	10 to 300	Pilot Operated	(-7 to 183) 6 Ranges	From set point	E0.000 (0C.000)	OB-2000	306
	(.69 to 20		e Hangee		58,032 (26,323)	OB-2000PT	310
Cooling	5 to 250 (.34 to 17)	Self Contained Reverse Acting	From 32 to 302 (0 to 150) 5 Ranges	±7 (±3) From set point	70 gpm (308 m3/hr)	0B-31	304

For Steam, Air and Non-Corrosive Liquids

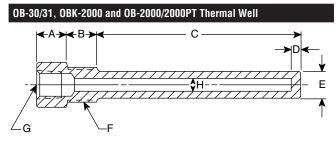
The Armstrong OB-30/31 is a direct acting temperature regulator that requires no external source for operation. Simple and compact, the unit is suitable for a wide variety of heating/cooling applications. Installing, adjusting or maintaining the OB-30/31 is quick and easy because interchangeable capillaries mount in any position and disconnect by simply loosening the union nut. No stem

packing so there's no leakage. Single composition seat for tight shutoff. The OB-30/31 comes in 1/2", 3/4" or 1" sizes and is available with a choice of five temperature ranges and three capillary lengths.

For a fully detailed certified drawing, refer to CDY #1036.

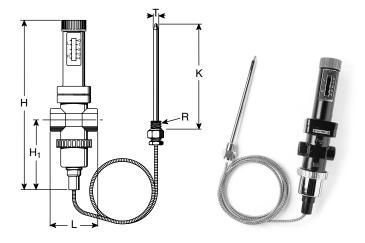
OB-30/31 S	Specifications							
Model	Application	Service	Max. Inlet Pressure psig (bar)	Maximum Diff. psig (bar)	Temperature Ranges °F (°C)	Max. Temp. °F (°C)	Temperature Accuracy °F (°C)	Capillary Lengths feet (meters)
0B-30	Heating	Steam, Water	Steam 150 (10)	140	32 - 95 (0 - 35) 77 - 158 (25 - 70)	366	±7 (±3)	*6-1/2 (2)
0B-31	Cooling	Water, Non-Corrosive Liquids	Liquid 250 (17)	(9.6)	104 - 212 (40 - 100) 140 - 266 (60 - 130) 158 - 302 (70 - 150)	(185)	From Set Point	9-1/2 (3) 16-1/2 (5)

*Standard length.


NOTES: Capillary can withstand a maximum of 72°F (40°C) above rated range. If desired set temperature is in temperature range overlap, select lower range.

OB-30/31 Materials					
Body Material	Seat Type & Material	Valve Material	Capillary Material	Bulb Material	Thermal Well Material
Bronze ASTM B584	Single Seat 304 Stainless Steel	Teflon	304 Stainless Steel Armor Shielded Capillary	Copper-Nickel Plated	*304 Stainless Steel or Brass

*Other materials available upon request.


OB-30/31	Dimensior	ns and We	eights													
Si	ze	L		H ₁		н			Т		K	F	ł	We	ight	C
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	υγ
1/2	15	3	80	5-1/8	130	12-1/2	315	3/8	10	8	200	1/2	15	6	2.8	3.7
3/4	20	3-1/8	85	5-1/8	130	12-1/2	315	3/8	10	8	200	1/2	15	6	2.8	4.6
1	25	3-1/2	95	5-1/8	130	12-1/2	315	3/8	10	8	200	1/2	15	6-1/2	3.0	5.8

Thermal Well Dimensio	ons															
Model	<i>I</i>	A B		C		D		E		F		G		Н		
WOUCI	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
OB-30/31	3/4	20	1	25	7-1/2	204	1/4	7	.765	20	3/4	20	1/2	15	.380	10
OB-2000/2000PT	1	25	3/4	20	7-3/4	197	1/4	7	.89	23	1	25	3/4	20	.630	16
OBK-2000	1	25	3/4	20	12-1/2	318	1/4	7	.765	20	3/4	20	1/2	15	.515	13

Standard Material: 304 stainless steel or brass. Other materials available upon request.

NOTE: When inserting sensor into thermal well, for best results, it is recommended that heat transfer medium be applied to sensor before installation.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Gemperature Controls

Pressure and

OB-30/3 ⁻	
----------------------	--

00.00	D Capaci	ition	Staam									
UB-3	u Gahac	lles— lb/hr	Steam				kg/hr					
			nection	Siza			Connection Size					
Inlet	Outlet	UUIII	in	0126	Inlet	Outlet	Com	mm	0126			
a	sig	1/2	3/4	1		bar	15	20	25			
	actors	3.7	4.6	5.8	Cv	Factors	3.7	4.6	5.8			
	3	67	83	105		.20	30	38	48			
5	2	81	100	127	.35	.14	37	45	58			
	0	101	126	159		0	46	57	72			
	8	75	94	118		.55	34	43	54			
10	6	104	130	164	.7	.41	47	59	75			
10	4	125	155	196		.28	57	70	89			
	0	154	191	241		0	70	87	110			
	12	101	125	158		.83	46	57	72			
15	9	139	172	218	1.0	.62	63	78	99			
	6	165	205	259		.41	75	93	118			
	0-5	200	249	314		035	91	113	143			
	15	139	173	218		1.0	63	79	99			
20	10 5	181 221	235 275	296 347	1.38	.7 .35	82 100	107 125	135 158			
	0-2	234	275	367		014	100	125	150			
	20	149	186	234		1.38	68	85	107			
	15	204	254	320		1.0	93	115	145			
25	10	241	300	378	1.72	.7	110	136	172			
	0-5	268	333	420		035	122	151	191			
	25	159	198	250		1.72	72	90	114			
30	15	258	322	406	2.0	1.0	117	146	185			
	0-7	302	375	473		048	137	170	215			
	30	244	304	384		2.0	111	138	175			
40	20	328	408	515	2.76	1.38	149	185	234			
	0-12	369	459	579		083	168	209	263			
	40	268	333	420		2.76	122	151	191			
50	30	383	451	569	3.45	2.0	174	205	259			
	0-17	437	543	685		0-1.2	199	247	311			
	50	290	360	454		3.45	132	164	206			
60	40	395	491	619	4.0	2.76	180	223	281			
	0-22	504	627	791		0-1.5	229	285	360			
	60	310	385	486		4.0	141	175	221			
70	50	328	424	665	4.83	3.45	149	193	302			
	40	502	624	787		2.76	228	284	358			
	0-27	572	711	897		0-1.9	260	323	408			
	70	329	409	616		4.83	150	186	280			
80	60 50	452 537	562 668	708 842	5.52	4.0 3.45	205 244	255 304	322 383			
	0-32	640	795	1,003		0-2.2	291	361	456			
	80	346	431	543		5.52	157	196	247			
	70	478	694	749		4.83	217	315	340			
90	60	570	708	893	6.0	4.0	259	322	406			
00	50	639	795	1,002		3.45	290	361	455			
	0-37	707	879	1,109		0-2.6	321	400	504			
	90	363	452	570		6.0	165	205	259			
	80	502	625	788		5.52	228	284	358			
100	70	600	747	942	6.9	4.83	273	340	428			
	60	676	840	1,060		4.0	307	382	482			
	0-42	776	963	1,215		0-2.9	353	438	552			
	110	489	608	767		7.59	222	276	349			
	100	619	770	971		6.9	281	350	441			
125	80	798	992	1,250	8.62	5.52	363	451	568			
	70	863	1,073	1,353		4.83	392	488	615			
	0-55	944	1,174	1,480		0-3.8	429	534	673			
	130	611	759	958		8.97	278	345	435			
150	120	736	915	1,154	10.0	8.28	335	416	525			
-	100	918	1,141	1,439		6.9	417	519	654			
	0-63	1,113	1,384	1,745		0-4.3	506	629	793			

NOTE: Where it is not possible to calculate pressure drop, 35% - 40% of gauge supply pressure can be used as a reasonable approximation.

Temperature Regulator Selection Example Parameters:

Application Will Require:

OB-30, 1" with 77-158°F Temp. Range, Capillary Length 6-1/2'

OB-30/3	81 Capaci	ties—Wa	iter										
	g	om			l/min								
ΔΡ	Cor	nection	Size		ΔΡ	Connection Size							
		in					mm						
psig	1/2	1/2 3/4 1			bar	15	20	25					
5	8.1	10.1	12.3		.35	30	38	47					
10	11.9	14.3	18.5		.70	45	55	70					
15	14.3	17.6	22.0		1.00	55	67	83					
20	16.7	6.7 20.7 2		16.7 20.7 26.4		16.7 20.7		1	1.40	63	78	100	
25	18.5	22.0	28.2	1	1.80	70	83	107					
30	20.3	25.6	31.7		2.00	77	97	120					
50	26.4	33.5	41.4	1	3.50	100	127	157					
75	32.6	39.6	49.3		5.20	123	150	187					
100	37.9	46.2	2 57.2		7.00	143	175	217					
125	42.2	52.0	65.6		8.70	160	197	248					
150	46.3	57.25	70.5]	10.00	175	217	267					

Capillary Temperature Ranges										
Temperature Ranges °F (°C)										
32 - 95 (0 - 35)										
77 - 158 (25 - 70)										
104 - 212 (40 - 100)										
140 - 266 (60 - 130)										
158 - 302 (70 - 150)										

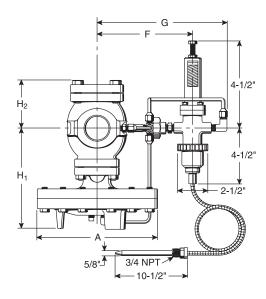
NOTE: If desired set temperature is in temperature range overlap, select lower range.

Armstrong's OB-2000 is a high performance externally piloted temperature regulator for large capacity applications such as heat exchangers, steam coils, steam dryers, plating tanks and parts washers. It is self-actuated and requires no external energy source. Capillary units mount in any position and can be easily disconnected and interchanged, offering easy installation and maximum application flexibility. Available in sizes 1/2" through 6" with six temperature ranges and three capillary lengths.

For a fully detailed certified drawing, refer to CDY #1013.

OD 20001	Specifications
UD-2000L	Specifications

Application	Inlet Pressure psig (bar)	Reduced Pressure psig (bar)	Temperature Ranges °F (°C)	Temperature Accuracy °F (°C)	Capillary Lengths feet (meters)
Steam	NPT 10 - 300 (.69 - 20) 150 lb Flanged 10 - 185 (.69 - 13 300 lb Flanged 10 - 300 (.69 - 20)	7 (.48)	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	±2 (±1) From Set Point	*6-1/2 (2) 9-1/2 (3) 16-1/2 (5)


*Standard length.

Note: If desired set temperature is in temperature range overlap, select lower range.

0B-2	000 C	Dimensio	ons a	nd Weigh	its																			
Size		Face-to-Face										А		F		G		Weight						
01/	26	NPT	-	150#	ŧ	300	ŧ	H ₁		H ₂ A				NPT		150#		300#		Cv				
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	5-15/16	150	5-9/16	141	5-3/4	147	6-3/4	170	2-15/16	74	7-15/16	200	6-5/8	169	8-3/4	222	31	15	33	15	39	18	5.0
3/4	20	5-15/16	150	5-1/2	140	5-3/4	147	6-3/4	170	2-15/16	74	7-15/16	200	6-5/8	169	8-3/4	222	31	15	33	15	39	18	7.2
1	25	6-15/16	160	5-3/4	147	6-1/4	159	6-15/16	175	3-1/16	76	8-15/16	226	6-7/8	174	8-7/8	226	39	19	41	20	47	21	10.9
1-1/4	32	7-1/8	180	6-1/2	166	7-1/16	179	7-5/8	192	3-9/16	90	8-5/16	226	7-1/8	182	9-1/4	235	47	22	49	23	54	24	14.3
1-1/2	40	7-1/8	180	7-7/16	189	7-15/16	202	7-5/8	192	3-9/16	90	8-15/16	226	7-1/8	182	9-1/4	235	47	22	49	23	54	24	18.8
2	50	9-1/8	230	8-9/16	217	9-1/8	232	8-1/2	216	4-1/16	103	10-15/16	276	7-7/16	189	9-1/2	242	71	33	77	36	78	36	32
2-1/2	65	-	-	10-15/16	278	11-1/2	292	9-13/16	251	4-7/8	122	13-13/16	352	8-1/8	206	10-1/8	259	-	-	138	63	140	64	60
3	80	-	-	11-3/4	298	12-7/16	315	10-7/16	264	5-3/8	135	13-13/16	352	8-9/16	217	10-5/8	270	-	-	149	69	155	71	78
4	100	-	-	13-1/2	343	14-1/8	359	12-5/8	321	6-9/16	167	15-13/16	401	9-1/4	234	11-1/4	287	-	-	234	107	243	110	120

NOTE: For 6" (150 mm) consult factory.

*50% reduced port available for sizes $1/2^{\circ}$ - 4". The C_v value should be divided by 2 to get reduced port C_v.

B-2000 Sensor and A					
Capillary Material	Capillary Temperature Ranges °F (°C)	Bulb Material	Bulb Connection	Thermal Well Material	Thermal Well Connection
Copper Capillary Tube With 304 Stainless Steel Armor Shield	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	Nickel Plated Copper Bulb	3/4" (20 mm) NPT	Brass* 304 Stainless Steel*	1" (25 mm) NPT

*Standard. Other material available upon request. See page 310 for dimensions of well. NOTE: Capillary can withstand a maximum of 36°F (20°C) above rated range.

NOTE: If desired set temperature is in temperature range overlap, select lower range.

OB-2000 Materials					
OB-2000	Body Material	Seat Type & Material	Valve Material	Connection	Maximum Temperature °F (°C)
Main Valve	Ductile Iron ASTM A536	Single Seat Stainless Steel	Stainless Steel AISI 420	NPT 150 lb Flanged 300 lb Flanged	450 (232)
Temperature Pilot Valve	Bronze ASTM B584	AISI 420		1/4" (6 mm) NPT	

Valve Sizing	
Proper valve selection requires the following information	
 Steam capacity required for application 	
 Supply pressure of steam 	

• Allowable pressure drop across valve*

*Where it is not possible to calculate pressure drop, 35% - 40% of gauge supply pressure can be used as a reasonable approximation.

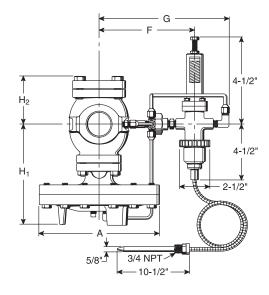
Temperature Regulator Selection Example Parameters:

Fluid	۱
Maximum inlet pressure	i
Outlet pressure75 ps	i
Maximum flow rate	r
Temperature required 180°F	-
Distance from regulator to sensing point 5	
To Locate Proper Model (refer to chart on page 317):	
Enter inlet column at 100 ps	i
Move to outlet pressure of	i
Locate capacity of	
1,500 lbs/hr under 1" connection siz	e
Find capillary temp. range 131-201°F	-
Select capillary length	
Application Will Require:	
OB-2000, 1" with 131-201°F Temp. Range,	
Capillary Length 6-1/2'	

Armstrong's OB-2000L is a high performance externally piloted temperature regulator for large capacity and low pressure applications. It is self-actuated and requires no external energy source. Capillary units mount in any position and can be easily disconnected and interchanged, offering easy installation and maximum application flexibility. Available in sizes 1/2" through 4" with six temperature ranges and three capillary lengths.

For a fully detailed certified drawing, refer to CDY #2232.

Application	Inlet Pressure	Reduced Pressure	Temperature Ranges	Temperature Accuracy	Capillary Lengths
	psig (bar)	psig (bar)	°F (°C)	°F (°C)	feet (meters)
Steam	5 - 15 (.3 - 1)	3 (.21)	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	±2 (±1) From Set Point	*6-1/2 (2) 9-1/2 (3) 16-1/2 (5)


*Standard length.

Note: If desired set temperature is in temperature range overlap, select lower range.

0B-2	DOOL	Dimensio	ns and	Weights																
Size		F	Face "L"	H1	u		u					G			We	ight				
31	26	NPT		150#	ŧ	ⁿ 1		H ₂		A F		u		NPT		150#		C _v		
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	
1/2	15	5-15/16	150	5-9/16	141	6-3/4	170	2-15/16	74	7-15/16	200	6-5/8	169	8-3/4	222	31	15	33	15	6.5
3/4	20	5-15/16	150	5-1/2	140	6-3/4	170	2-15/16	74	7-15/16	200	6-5/8	169	8-3/4	222	31	15	33	15	9
1	25	6-5/16	160	5-3/4	147	6-15/16	175	3-1/16	76	8-15/16	226	6-7/8	174	8-7/8	226	39	19	41	20	12
1-1/4	32	7-1/8	180	6-1/2	166	7-5/8	192	3-9/16	90	8-15/16	226	7-1/8	182	9-1/4	235	47	22	49	23	19
1-1/2	40	7-1/8	180	7-7/16	189	7-5/8	192	3-9/16	90	8-15/16	226	7-1/8	182	9-1/4	235	47	22	49	23	22
2	50	9-1/8	230	8-9/16	217	8-1/2	216	4-1/16	103	10-15/16	276	7-7/16	189	9-1/2	242	71	33	77	36	38
2-1/2	65	—	_	10-15/16	278	9-13/16	251	4-7/8	122	13-13/16	352	8-1/8	206	10-1/8	259	_	—	138	63	66
3	80	—	_	11-3/4	298	10-7/16	264	5-3/8	135	13-13/16	352	8-9/16	217	10-5/8	270	_	_	149	69	78
4	100	—	_	13-1/2	343	12-5/8	321	6-9/16	167	15-13/16	401	9-1/4	234	11-1/4	287			234	107	116

*50% reduced port available for sizes 1/2" - 4". The C_v value should be divided by 2 to get reduced port C_v.

For capacities see page 315.

OB-2000L Sensor and Accessory Specifications												
Capillary Material	Capillary Temperature Ranges °F (°C)	Bulb Material	Bulb Connection	Thermal Well Material	Thermal Well Connection							
Copper Capillary Tube With 304 Stainless Steel Armor Shield	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	Nickel Plated Copper Bulb	3/4" (20 mm) NPT	Brass* 304 Stainless Steel*	1" (25 mm) NPT							

*Standard. Other material available upon request. See page 310 for dimensions of well.

NOTE: Capillary can withstand a maximum of 36°F (20°C) above rated range.

NOTE: If desired set temperature is in temperature range overlap, select lower range.

OB-2000L Materials						
OB-2000	Body Material	Seat Type & Material	Valve Material	Connection	Maximum Temperature °F (°C)	
Main Valve	Ductile Iron ASTM A536	Single Seat Stainless Steel	Stainless Steel	NPT 150 lb Flanged 300 lb Flanged	450 (232)	
Temperature Pilot Valve	Bronze ASTM B584	AISI 420	AISI 420	1/4" (6 mm) NPT	· · ·	

GP-2000L, **OB-2000L**

Capacities for Steam Service

GP-2	000L ar	nd OB [.]	-2000	L Stea	am Ca	ipaciti	ies														
					lb/h	r					kg/hr										
Inlet	Outlet				Co	onnecti	on Size				Inlot	Outlet	Connection Size								
met	Uullet					in					Inlet Outlet mm										
p	sig	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	t	bar		20	25	32	40	50	65	80	100
5	2	218	277	316	495	594	1,100	1,782	1,881	3,135	0.34	0.14	99	126	143	225	269	499	808	853	1,422
10	7 3	161 356	223 435	297 475	471 812	545 920	942 1,518	1,635 2,574	1,933 2,772	2,874 4,598	0.69	0.48 0.21	73 161	101 197	135 215	214 368	247 417	427 689	742 1,168	877 1,257	1,304 2,086
15	12 8 3	178 261 416	246 362 482	328 483 594	519 764 970	601 885 1,168	1,038 1,528 1,694	1,803 2,654 3,069	2,131 3,137 3,366	3,169 4,665 5,643	1.03	0.83 0.55 0.21	81 119 189	112 164 219	149 219 269	235 347 440	273 401 530	471 693 768	818 1,204 1,392	966 1,423 1,527	1,437 2,116 2,560

Note: For reduced port capacity, please divide capacity by 2.

Pressure and Temperature Controls

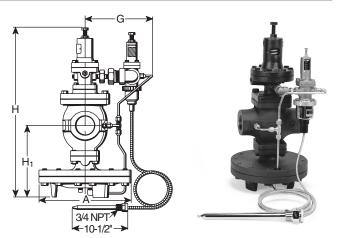
The OB-2000PT is a diaphragm-operated externally piloted pressure/temperature combination regulator. It is used in applications where maximum pressure should be limited and the temperature of the heated medium is controlled using a single seated main valve. Temperature pilot and capillary unit disconnect, making repairs or temperature range

changes quick and easy. Available in sizes 1/2" through 6" and with a choice of four spring ranges, six temperature ranges and three capillary lengths.

For a fully detailed certified drawing, refer to CDY #1006.

OB-2000PT S	pecifications					
Application	Inlet Pressure psig (bar)	Minimum Differ. Pressure psig (bar)	Reduced Pressure & Spring Color psig (bar)	Temperature Ranges °F (°C)	Temperature Accuracy °F (°C)	Capillary Lengths feet (meters)
Steam	NPT 15 - 300 (1 - 20) 150 lb Flanged 15 - 185 (1 - 13) 300 lb Flanged 15 - 300 (1 - 20)	7 (.48)	1.5 - 3 (.1021) Yellow 3 - 21 (.21 - 1.4) Yellow 15 - 200 (1.0 - 13.8) Green	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	±2 (±1) From Set Point	6-1/2 (2)* 9-1/2 (3) 16-1/2 (5)

*Standard length


OB-2000PT Sensor and Access	ory Specifications				
Capillary Material	Capillary Temperature Ranges °F (°C)	Bulb Material	Bulb Connection	Thermal Well Material	Thermal Well Connection
Copper Capillary Tube With 304 Stainless Steel Armor Shield	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	Nickel Plated Copper Bulb	3/4" (20 mm) NPT	Brass* 304 Stainless Steel*	1" (25 mm) NPT

*Standard. Other material available upon request. See page 310 for dimensions of well. NOTES: Capillary can withstand a maximum of 36°F (20°C) above rated range. If desired set temperature is in temperature range overlap, select lower range.

0B-20	OOPT	Dimensi	ons ar	nd Weights	;																	
Siz	-	Face-to-Face		н н		A		G		Weights												
312	C	NPT	ſ	150#		300#	ŧ			H ₁		A				N	т	15	0#	30	0#	Cv
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	5-15/16	150	5-9/16	141	5-3/4	147	15-3/4	398	6-3/4	170	7-15/16	200	6-1/2	166	47	22	49	23	55	25	5.0
3/4	20	5-15/16	150	5-1/2	140	5-3/4	147	15-3/4	398	6-3/4	170	7-15/16	200	6-1/2	166	47	22	49	23	55	25	7.2
1	25	6-15/16	160	5-3/4	147	6-1/4	159	15-15/16	404	6-15/16	175	8-15/16	226	7	178	57	26	59	28	64	29	10.9
1-1/4	32	7-1/8	180	6-1/2	166	7-1/16	179	17-1/8	434	7-5/8	192	8-15/16	226	7-1/4	185	67	31	69	31	74	34	14.3
1-1/2	40	7-1/8	180	7-7/16	189	7-15/16	202	17-1/8	434	7-5/8	192	8-15/16	226	7-1/4	185	67	31	69	31	75	34	18.8
2	50	9-1/8	230	8-9/16	217	9-1/8	232	19-5/8	498	8-1/2	216	10-15/16	276	6-1/2	166	89	41	94	43	100	46	32
2-1/2	65	-	-	10-15/16	278	11-1/2	292	21-3/4	552	9-13/16	251	13-13/16	352	6-1/2	166	-	-	158	72	167	76	60
3	80	-	-	11-3/4	298	12-7/16	315	22-5/8	575	10-7/16	264	13-13/16	352	6-1/2	166	-	-	171	78	183	83	78
4	100	-	-	13-1/2	343	14-1/8	359	25-15/16	658	12-5/8	321	15-13/16	401	6-1/2	166	-	-	263	120	281	128	120

Note: For 6" (150 mm) consult factory.

OB-2000PT Materials												
OB-2000PT	Body Material	Valve & Seat Material	Maximum Temperature °F (°C)									
Main Valve	Ductile Iron ASTM A536											
Temperature Pilot Valve	Bronze ASTM B584	Stainless Steel AISI 420	450 (232)									
Pressure Pilot	Ductile Iron ASTM A536											

OB-2000, OB-2000PT

Capacities for Steam Service

					I	b/hr					
						Connect	ion Size				
nlet	Outlet					i					
ps	ia	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	6
C _v Fa		5	7.2	10.9	14.3	18.8	32	60	78	120	250
10*	0 - 3	211	304	460	604	794	1,352	2,534	3,294	5,068	10,55
15	8	201	290	438	575	756	1,287	2,413	3,137	4,826	10,05
10	0 - 3	250	361	546	716	942	1,603	3,005	3,907	6,010	12,52
20	13	219	316	478	628	825	1,404	2,633	3,423	5,267	10,97
	0 - 3	313	451	683	896	1,178	2,006	3,761	4,889	7,521	15,66
25	18 0 - 5	236 339	340 489	515 740	676 971	889 1,276	1,513 2,172	2,837 4,073	3,688 5,295	5,673 8,146	11,81 16,97
	23	252	363	550	721	948	1,614	3,026	3,934	6,052	12,60
30	0 - 7	382	550	833	1,093	1,437	2,446	4,586	5,962	9,172	19,10
	33	281	405	613	804	1,057	1,799	3,373	4,385	6,747	14,05
40	25	395	569	861	1,130	1,486	2,529	4,741	6,164	9,483	19,75
	0 - 12	468	673	1,020	1,338	1,758	2,993	5,612	7,296	11,224	23,38
	42	327	471	713	936	1,230	2,094	3,927	5,105	7,853	16,36
50	30	491	707	1,071	1,405	1,847	3,143	5,894	7,662	11,788	24,55
	0 - 17 51	553 373	797 537	1,206 814	1,582 1,067	2,080 1,403	3,540 2,389	6,638 4,479	8,630 5,823	13,276 8,958	27,65 18,66
	45	373 471	679	1,028	1,348	1,403	2,369 3,017	4,479 5,657	5,625 7,355	o,900 11,315	23,57
60	35	586	843	1,020	1,675	2,202	3,748	7,027	9,135	14,053	29,27
	0 - 22	639	920	1,392	1,827	2,401	4,088	7,664	9,963	15,328	31,93
	63	471	678	1,026	1,346	1,769	3,012	5,647	7,341	11,295	23,53
75	55	593	854	1,292	1,696	2,229	3,794	7,114	9,249	14,229	29,64
75	45	703	1,012	1,532	2,010	2,643	4,499	8,435	10,966	16,871	35,14
	0 - 30	767	1,104	1,672	2,193	2,884	4,908	9,203	11,964	18,406	38,34
	85	595	857	1,298	1,703	2,239	3,811	7,145	9,289	14,291	29,77
100	75	751	1,081	1,636	2,147	2,822	4,804	9,007	11,709	18,014	37,52
	60	914	1,316	1,992	2,614	3,436	5,849	10,967	14,257	21,934	45,69
	0 - 42 106	981 739	1,412 1,064	2,138 1,610	2,805 2,112	3,687 2,777	6,276 4,727	11,768 8,863	15,299 11,522	23,536	49,03
	100	837	1,004	1,825	2,112	3,149	4,727 5,359	0,003 10,048	13,063	17,725 20,097	36,92 41,86
125	75	1,125	1,619	2,451	3,216	4,228	7,197	13,494	17,543	26,989	56,22
	0 - 55	1,194	1,720	2,604	3,416	4,491	7,644	14,333	18,633	28,666	59,72
	127	881	1,269	1,922	2,521	3,314	5,641	10,577	13,751	21,155	44,07
150	100	1,241	1,787	2,705	3,549	4,666	7,943	14,893	19,360	29,785	62,05
	0 - 67	1,408	2,028	3,070	4,027	5,295	9,012	16,898	21,968	33,796	70,40
	148	1,024	1,475	2,233	2,929	3,851	6,555	12,291	15,978	24,581	51,21
175	125	1,348	1,940	2,938	3,854	5,067	8,624	16,170	21,021	32,341	67,37
	100	1,587	2,285	3,459	4,537	5,965	10,154	19,038	24,750	38,076	79,32
	0 - 80	1,622	2,336	3,536	4,639	6,098	10,380	19,463	25,302	38,926	81,09
	170 150	1,149 1,446	1,655 2,083	2,506 3,153	3,287 4,136	4,322 5,438	7,356 9,256	13,792 17,354	17,930 22,560	27,585 34,708	57,46 72,30
200	125	1,440	2,003	3,732	4,130	5,438 6,437	9,250 10,956	20,542	22,500	41,085	85,59
	0 - 92	1,836	2,643	4,002	5,250	6,902	11,748	22,028	28,637	44,056	91,78
	191	1,292	1,861	2,817	3,695	4,858	8,270	15,505	20,157	31,011	64,60
00E	175	1,539	2,215	3,354	4,400	5,785	9,847	18,462	24,001	36,925	76,92
225	150	1,829	2,633	3,986	5,230	6,876	11,703	21,944	28,527	43,887	91,43
	0 - 105	2,049	2,951	4,468	5,861	7,706	13,116	24,593	31,971	49,186	102,4
	200	1,626	2,341	3,544	4,649	6,112	10,404	19,508	25,360	39,015	81,28
250	175	1,938	2,791	4,226	5,544	7,288	12,406	23,261	30,239	46,521	96,91
	150	2,176	3,133	4,743	6,223	8,181	13,925	26,110	33,943	52,219	108,7
	0 - 117	2,263	3,259	4,934	6,473	8,510	14,484	27,158	35,306	54,316	113,1
275	200 175	2,042 2,299	2,941 3,311	4,452 5,012	5,841 6,575	7,679 8,644	13,070 14,714	24,507 27,588	31,859 35,864	49,014 55,176	102,1
21 J	0 - 130	2,299 2,477	3,567	5,012 5,400	6,575 7,084	0,044 9,313	14,714	29,723	33,664 38,640	59,446	114,9 123,8
	200	2,477	3,479	5,267	6,910	9,084	15,462	28,991	37,688	57,982	123,0
300	175	2,410	3,797	5,748	7,540	9,004 9,913	16,874	31,638	41,130	63,277	131,8
	0 - 142	2,691	3,875	5,866	7,695	10,117	17,220	32,288	41,975	64,576	134,5

*Minimum inlet pressure for OB-2000PT is 15 psi (1 bar) because of the pressure pilot.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Pressure and Temperature Controls

317

Armstrong[®] OB-2000, OB-2000PT

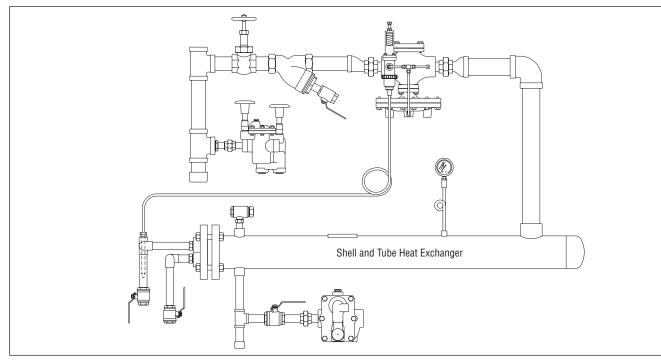
Capacities for Steam Service

OB-2000 OB-2000PT Canacities—Steam

					k	g/hr					
						Connect	ion Size				
Inlet	Outlet					m	m				
b	ar	15	20	25	32	40	50	65	80	100	150
C _v F	actor	5	7.2	10.9	14.3	18.8	32	60	78	120	250
0.69*	021	96	138	209	274	360	613	1,150	1,494	2,299	4,790
1.03	0.55	91	131	199	261	343	584	1,095	1,423	2,189	4,561
1.05	021	114	164	248	325	427	727	1,363	1,772	2,726	5,679
1.38	0.90	100	143	217	285	374	637	1,194	1,553	2,389	4,977
	021	142	205	310	407	534	910	1,706	2,218	3,412	7,108
1.72	1.24	107	154	234	307	403	686	1,287	1,673	2,573	5,36
	034 1.59	<u>154</u> 114	222 165	336 249	440 327	579 430	985 732	1,848 1,373	2,402 1,784	3,695 2,745	7,698
2.07	048	173	250	378	496	430 652	1,109	2,080	2,704	2,745 4,161	8,668
	2.28	128	184	278	365	479	816	1,530	1,989	3,060	6,376
2.76	1.72	114	165	249	327	430	732	1,373	1,784	2,745	5,719
	083	173	250	378	496	652	1,109	2,080	2,704	4,161	8,668
	2.90	128	184	278	365	479	816	1,530	1,989	3,060	6,376
3.45	2.07	179	258	391	513	674	1,147	2,151	2,796	4,301	8,96
	0 - 1.17	212	305	462	607	798	1,358	2,546	3,309	5,091	10,60
	3.52	148	214	324	425	558	950	1,781	2,315	3,562	7,42
4.14	3.10	148	214	324	425	558	950	1,781	2,315	3,562	7,42
	2.41 0 - 1.5	223 251	321 361	486 547	637 718	838 943	1,426 1,606	2,673 3,011	3,475 3,914	5,347 6,022	11,13 12,54
	4.34	213	307	465	611	803	1,806	2,562	3,330	5,123	12,54
	3.79	269	387	586	769	1,011	1,721	3,227	4,195	6,454	13,44
5.17	3.10	319	459	695	912	1,199	2,041	3,826	4,974	7,653	15,94
	0 - 2.1	348	501	758	995	1,308	2,226	4,175	5,427	8,349	17,39
	5.86	270	389	589	772	1,016	1,729	3,241	4,213	6,482	13,50
6.89	5.17	340	490	742	974	1,280	2,179	4,086	5,311	8,171	17,02
	4.14	415	597	904	1,186	1,559	2,653	4,975	6,467	9,949	20,72
	0 - 2.9	445	641	970	1,272	1,673	2,847	5,338	6,939	10,676	22,24
	7.31	335	482	730	958	1,260	2,144	4,020	5,226	8,040	16,75
8.62	6.89 5.17	380 510	547 735	828 1,112	1,086 1,459	1,428 1,918	2,431 3,265	4,558 6,121	5,925 7,957	9,116 12,242	18,99 25,50
	0 - 3.7	542	780	1,112	1,459	2,037	3,205 3,467	6,502	8,452	12,242	25,50
	8.76	400	576	872	1,143	1,503	2,559	4,798	6,237	9,596	19,99
10.34	6.89	563	811	1,227	1,610	2,117	3,603	6,755	8,782	13,510	28,14
	0 - 4.6	639	920	1,392	1,827	2,402	4,088	7,665	9,964	15,330	31,93
	10.20	465	669	1,013	1,329	1,747	2,973	5,575	7,247	11,150	23,22
12.07	8.62	611	880	1,332	1,748	2,298	3,912	7,335	9,535	14,670	30,56
12.01	6.89	720	1,036	1,569	2,058	2,706	4,606	8,636	11,226	17,271	35,98
	0 - 5.5	736	1,059	1,604	2,104	2,766	4,709	8,828	11,477	17,657	36,78
	11.72	521	751	1,137	1,491	1,960	3,337	6,256	8,133	12,512	26,06
13.79	10.34 8.62	656 776	945 1,118	1,430 1,693	1,876 2,221	2,466 2,920	4,198 4,970	7,872 9,318	10,233 12,113	15,744 18,636	32,79 38,82
	0 - 6.3	833	1,199	1,815	2,221	3,131	5,329	9,992	12,113	19,984	41,63
	13.17	586	844	1,278	1,676	2,204	3,751	7,033	9,143	14,066	29,30
	12.07	698	1,005	1,521	1,996	2,624	4,466	8,374	10,887	16,749	34,89
15.51	10.34	829	1,194	1,808	2,372	3,119	5,309	9,954	12,940	19,907	41,47
	0 - 7.24	930	1,339	2,027	2,659	3,495	5,950	11,155	14,502	22,311	46,48
	13.79	737	1,062	1,607	2,109	2,773	4,719	8,849	11,503	17,697	36,86
7.24	12.07	879	1,266	1,917	2,515	3,306	5,627	10,551	13,716	21,102	43,96
	10.34	987	1,421	2,152	2,823	3,711	6,316	11,843	15,396	23,687	49,34
	0 - 8.06	1,027	1,478	2,238	2,936	3,860	6,570	12,319	16,015	24,638	51,32
18.96	13.79	926	1,334	2,019	2,649	3,483	5,929	11,116	14,451	22,233	46,31
10.30	12.07 0 - 8.96	1,043 1,124	1,502 1,618	2,273 2,449	2,982 3,213	3,921 4,224	6,674 7,191	12,514 13,482	16,268 17,527	25,028 26,965	52,14 56,17
	13.79	1,124	1,578	2,389	3,134	4,224	7,013	13,462	17,095	26,300	54,79
20.00	12.07	1,196	1,722	2,503	3,420	4,120	7,654	14,351	18,656	28,702	59,79
	0 - 9.79	1,220	1,758	2,661	3,491	4,589	7,811	14,646	19,040	29,292	61,02

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Pressure and Temperature Controls



Points to Remember When Installing

- Drain condensate at inlet of pressure/temperature regulator with inverted bucket steam trap.
- Protect temperature regulating valve from dirt and scale by installing strainer with 100 mesh screen at inlet of valve.
- Install shutoff valves on either side of the regulating valve along with a by-pass line for maintenance purposes.
- Install vacuum breaker after the outlet of equipment and before the steam trap.

- · Install sensor so it is fully immersed in the fluid being heated.
- If temperature well is used, apply heat transfer medium to sensor before insertion into well.
- Place thermometer into system in close proximity to temperature sensor for accurate valve adjustment.
- If possible, do not elevate condensate after steam trap.
- Determine pressure setting before temperature setting (OB-2000PT only).

Typical Installation-OB-30, OB-2000

Load Calculations

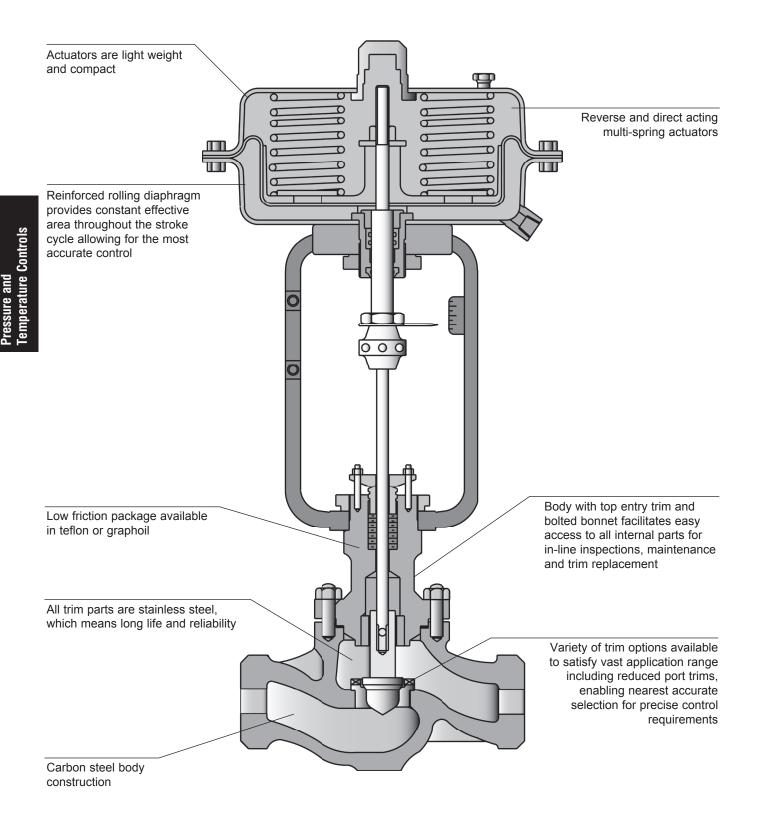
Heating oil with steam Ib/hr steam = $\frac{\text{GPM}}{4} \times \Delta T \times 1.1$

Heating water with steam

lb/hr steam = $\frac{\text{GPM}}{2} \times \Delta T \times 1.1$

Heating air with steam

lb/hr steam = $\frac{CFM}{900} \times \Delta T \times 1.1$


Jacketed kettles or tanks

lb/hr steam = $\frac{\text{Gal x SG x Cp x } \Delta T \text{ x 8.3}}{\text{Lat x T}}$

Where:

- GPM = Gallons per minute
- ΔT = Temperature rise (°F)
- CFM = Cubic feet per minute
- Cp = Specific heat of liquids (Btu/lb- $^{\circ}$ F)
- T = Time (hours)
- Lat = Latent heat of steam (Btu/lb)
- Gal = Gallons of liquid to be heated
- SG = Specific gravity
- 1.1 = Safety factor

Python[®] - 1100 Series Control Valves

When accurate control is desired from your steam or water applications the Armstrong Python® 1100 Series Control Valve will squeeze every bit of performance out of your system and deliver precise control. With a wide range of materials, sizes, trim, and other features, you are sure to find the Python® can accurately control your system. The Python® 1100 Series Control Valve is constructed and equipped with state of the art materials and is designed to meet the most stringent budget.

Product Features

- Series 1100 valves are Globe two-way single seated body design valves, which satisfy the majority of control applications for HVAC, industrial and commercial markets.
- Body with top entry trim and bolted bonnet facilitates easy access to all internal parts for in-line inspection, maintenance and trim replacement.
- Stream line flow path provides large flow capacity.
- Variety of trim options are available to satisfy a vast application range including reduced port trims enabling nearest accurate selection for precise control requirements.
- Trims with top bush guided plugs are available with simple construction for stable operation, assuring high rangeability and turndown ratios.
- Micro trims available for control of minute flow rates.
- Trims with large guide plugs are available for full pressure balancing effect providing an economical choice for high pressure applications.
- All parts are renewable in-line.
- · Carbon steel or stainless steel body construction.
- Reverse and direct acting multi-spring actuators.
- Available in 1/2" 2" NPT and 1/2" 8" ANSI flange design.
- Rated for class IV shut-off.

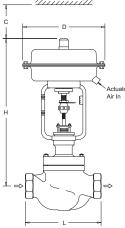
Accessories

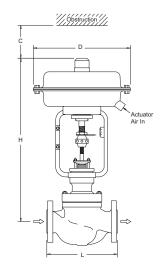
- Pneumatic Valve Positioner
- Electro-Pneumatic (E/P) Valve Positioner
- Digital Valve Positioners
- Pressure/Temperature Controllers
- Air Filter Regulator

Python[®] Series 1100 Control Valve

Python[®] Series 1100 Control Valve with Positioner

Armstrong[®] Python[®] - 1100 Series Control Valves


Control Valves - 1100 Series List of Materials	
Valve Body*	Carbon Steel A216 Gr. WCB
Bonnet*	
Valve/Valve Seat	Stainless Steel AISI 431
Valve Stem	Stainless Steel 316
Gland Packing	V-Teflon - option 1 (366°F Max.) Grafoil - option 2
Yoke	S.G. Iron
Actuator Spring	Chrome Vanadium/Spring Steel
Actuator Diaphragm	Nitrile Reinforced with Nylon Fiber

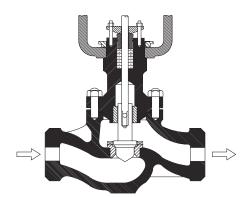

*Stainless steel available.

Control Va	Control Valves - 1100 Series Specifications									
Flow		Equal Percentage								
Leakage		ANSI Class IV								
Rangeability		50:1								
	1/2" to 1"	11/16" (18 mm)								
Travel	1-1/2" to 2"	1-1/8" (28 mm)								
IIdvei	2-1/2" to 4"	1-1/2" (38 mm)								
	6" to 8"	2-1/4" (58 mm)								
Maximum Te	emperature	450°F (232°C)*								
Maximum P	ressure	300 psig (20 bar)*								

Pressure and Temperature Controls

*Higher pressure and temperature valves available.

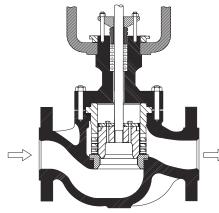
Contro	Control Valves - 1100 Series Dimensions and Weights																		
Siz	ze		E	ace-to-F	ace "L	33		"C'	,	"D"		"Н'	,			We	ight		
in		NP	Т	150)#	300)#	U	U		U		п		PT	150#		300#	
	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg
1/2	15	6-1/2	165	7	178	—	—	4	102	9-7/16	240	18-1/2	470	31	14	34	15	—	—
3/4	20	6-1/2	165	7-1/8	181		—	4	102	9-7/16	240	18-1/2	470	31	14	34	15	—	—
1	25	7-3/4	197	7-1/4	184	7-3/4	197	4	102	9-7/16	240	18-1/2	470	33	15	36	16	40	18
1-1/2	40	9-1/4	25	8-3/4	222	9-1/4	235	5	127	11-7/16	290	20-9/32	515	51	23	55	25	60	27
2	50	10-1/2	267	10	254	10-1/2	267	5	127	11-7/16	290	20-9/32	515	60	27	65	30	71	32
2-1/2	65	—	—	10-7/8	276	11-1/2	292	6	127	15	380	25-3/16	640	—	—	120	54	135	61
3	80	—	—	11-3/4	299	12-1/2	318	6	152	15	380	25-3/16	640	—	—	135	61	154	70
4	100	—	—	13-7/8	353	14-1/2	368	6	152	15	380	26-3/8	670	—	—	176	80	220	100
6	150		—	17-3/4	451	18-5/8	473	7	175	17-5/8	448	43-1/2	1105		—	330	150	396	180
8	200	_	_	21-3/8	543	22-3/8	568	7	175	17-5/8	448	45-1/4	1150	_	—	551	250	650	295


Note: Additional sizes up to 20" available upon request.

Python[®] - 1100 Series Control Valves

Contour Top Guided

The Contour Top Guided trims are the preferred choice for a variety of control applications due to their simple construction. Heavy top guided trim provides maximum support to impart complete stability. The plug shank is guided at the lowest portion of the bonnet minimizing the effect of side thrust on the valve plug and eliminating trim vibration.


Contoured Top Guided Trim (Unbalanced)

Multi-Hole Cage Guided - Pressure Balanced

The large guide trims with pressure balancing effect enable the valve to handle higher ΔP shut off without employing high power actuators. The flow characteristic is achieved through plug contour. Equalizing holes are opened in the plug which effectively cancel out the unbalanced force impressed on the top and bottom of the valve plug.

Pressure balance sealing is attained; 1) At seating surface 2) Through pressure balance seal rings which are fitted on the plug seal applying pressure along the inner wall of the large guide having a ground, honed and chrome plated surface.

This multi-hole trim also helps with noise attenuation.

Multi-Hole Cage Guided Pressure Balanced Trims

Contoured Top Guided Cv Values

Valve Size		Trim Size		
in	mm	in	mm	Cv
	*15, *20, 25	1	25	13
		3/4	20	9
*1/2,		1/2	15	5
*3/4,		5/16	8	3
'		1/4	6	2
		1/8	3	1
1-1/2	40	1-1/2	40	30
		1-1/4	32	20
		1	25	13
2	50	2	50	50
		1-1/2	40	30
		1-1/4	32	20
	65	2-1/2	65	80
2-1/2		2	50	50
		1-1/2	40	30
3	80	3	80	110
		2-1/2	65	80
		2	50	50
4	100	4	100	200
		3	80	110
		2-1/2	65	80
	150	6	150	400
6		5	125	300
		4	100	200
8	200	8	200	640
		6	150	400
		5	125	300

Note: Additional sizes up to 20" available upon request.

* The trim size must be less than or equal to the valve size.

Multi-Hole Cage Guided Cv Values

Valv	e Size	Trim Size		
in	mm	in	mm	Cv
1-1/2	40	1-1/2	40	24
		1-1/4	32	16
		1	25	10
2	50	2	50	40
		1-1/2	40	24
		1-1/4	32	16
2-1/2	65	2-1/2	65	64
		2	50	40
		1-1/2	40	24
	80	3	80	90
3		2-1/2	65	64
		2	50	40
4	100	4	100	160
		3	80	90
		2-1/2	65	64
6	150	6	150	320
		5	125	240
		4	100	160
8	200	8	200	510
		6	150	320
		5	125	240

Note: Additional sizes up to 20" available upon request.

Multi-Spring Actuators: Series M

The "M" Series control valve actuators are diaphragm actuators with pre-compressed multi-spring construction. They are compact (fewer parts), easy to maintain and quickly reversible. The actuators are suitable for regulating and on/off applications. Various models are available covering small to larger thrust requirements.

The increasing air pressure supply moves the diaphragm and actuator stem opposing the spring force. With decreasing air pressure supply, the spring force moves the diaphragm in the opposite direction and back to the normal position. To get various loading capacities the number of springs are altered.

Specifications

- Maximum Diaphragm Pressure:
 50 pai (2.5 bar) for Medal M and
- 50 psi (3.5 bar) for Model M and Mp Actuator travel:

11/16", 1-1/8", 1-1/2", 2-1/4"

(18, 28, 38, 58 mm) • Diaphragm:

Nitrile reinforced with Nylon fiber

- Operating Temperature Range: -40° to 176°F (-40° to 80°C)
- Connections: 1/4" NPT (F) for Models 00 and 11
- 3/8" NPT (F) for Models 22 and 33 • Permissible Linearity and Hysterisis:
- ±5% of Signal Pressure Range

Features:

- Utility Applicable for regulating and on-off applications
- High Power Variety of models provide choice for low and high thrust requirements
- Construction Due to multi-spring arrangement the actuators are lightweight and compact
- Reversible The actuators are field reversible without demanding addition or deletion of parts
- Long Service Life Rigid construction and durable components provide a long lasting service life
- Minimum Maintenance The actuators are virtually maintenance free
- Accuracy Rolling diaphragm construction provides constant effective area throughout the stroke

Direct Acting Actuators (Fail Open)

The actuator stem moves downward with increasing diaphragm pressure. When this pressure is reduced the opposing spring force moves the actuator stem upward. On air failure, the actuator stem is pulled to the extreme upward position by spring force.

This actuator is suitable for the following:

Fail Open - For valves with plugs that push down to close Fail Close - For valves with plugs that push down to open

Reverse Acting Actuators (Fail Close)

The actuator stem moves upward with increasing diaphragm pressure. When this pressure is reduced the opposing spring force moves the actuator stem downward. On air failure, the actuator stem is pushed to extreme downward position by spring force.

This actuator is suitable for the following:

Fail Close - For valves with plugs that push down to close Fail Open - For valves with plugs that push down to open

Air Volume Required Per Stroke.	
Model Number	Cubic Feet/Stroke
M-00, Mp-00	0.012
M-11, Mp-11	0.035
M-22, Mp-22	0.082
M-33, Mp-33	0.185

Python[®] - 1100 Series Control Valve

Contou	red Top Gu	ided Shut	Off Pressure														
	Air	Spring S	etting Range				Maxi	mum Di	fferenti	al Press	ure (PSI) AP / S	Shut Off	Pressur	e		
Model No.	Supply Pres. to Diaph.	Direct Acting Actuator	Reverse Acting Actuator	Diaph. Area						Tri	m Size						
	PSI	PSI	PSI	inch ²	1/8"	1/4" - 5/16"	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	2-1/2"	3"	4"	6"	8"
	20	3 - 15	3 - 15		300	300	206	134	94		—	—	—	—	—	—	—
	23	5-15	6 - 18		300	300	300	300	222	—	—	—	—	—	—	—	—
M-00	34		6 - 30	30	300	300	300	300	222	—	—	—	—	—	—	—	—
	37	6 - 30	9 - 32		300	300	300	300	300	—		—	—	—	—	—	—
	40		12 - 35		300	300	300	300	300	—		—	—	—	—	—	
	20	3 - 15	3 - 15		_	_	_	—	—	121	78	43		_	—	—	
	23	3-10	6 - 18		_	_	_	—	—	269	178	102	—	_	—	—	—
M-11	34		6 - 30	55	_	—	_	—	—	269	178	102	—	_	—	_	—
	37	6 - 30	9 - 32				_			300	279	162	—				—
	40		12 - 35							300	300	222	—				—
	20	3 - 15	3 - 15										51	35	16		
	23	5-15	6 - 18										114	80	38		
M-22	34		6 - 30	95		_							114	80	38		
	37	6 - 30	9 - 32			—	_						178	125	62	_	
	40		12 - 35			—	_						240	172	85	_	
	20	3 - 15	3 - 15		_	—	_	—	—	_	—	_	—	_	—	10	5
	23	5-15	6 - 18		—	—	—	—	—	—	—	—	—	—	—	27	14
M-33	34		6 - 30	140	—	—	—	—	—	—	—	—	—	—	—	27	14
	37	6 - 30	9 - 32		—	—	—	_	—	—	—	—	—		—	42	25
	40		12 - 35		_	_	—		—	_	_		—		—	60	32

Pressure and Temperature Controls

Do not exceed 50 PSIG air pressure to the actuator.

Multi-Hole	e Cage Guided Sl	hut Off Pressu	re								
	Air Supply	Spring	Setting Range			Maximum D	ifferential F	Pressure (PS	SI) ∆P / Shu	t Off Pressu	re
Model No.	Pres. to Diaph.	Direct Acting Actuator	Reverse Acting Actuator	Diaph. Area				Trim Size			
	PSI	PSI	PSI	inch ²	1-1/2"	2"	2-1/2"	3"	4"	6"	8"
	20	3 - 15	3 - 15		257	150	—	—	_	—	—
	23	3-10	6 - 18		300	300	—	—	_	—	—
M-11	34		6 - 30	55	300	300	—	—	_	—	—
	37	6 - 30	9 - 32		300	300	—	—	—	—	—
	40		12 - 35		300	300	—	—	—	—	—
	20	3 - 15	3 - 15		_	—	298	190	97	—	—
	23	3 - 15	6 - 18]	—	—	300	300	300	_	—
M-22	34		6 - 30	95	_	_	300	300	300	_	—
	37	6 - 30	9 - 32		—	_	300	300	300	_	—
	40		12 - 35		—	_	300	300	300	_	—
	20	0 15	3 - 15		_	_	—	—	—	133	21
	23	3 - 15	6 - 18		—		—	—	—	300	258
M-33	34		6 - 30	140	—		—	_	—	300	258
	37	6 - 30	9 - 32		—	—	—	—	—	300	300
	40		12 - 35		—	—	—	—	—	300	300

Do not exceed 50 PSIG air pressure to the actuator.

Armstrong[®] Python[®] - Electric Actuators

When accurate control of your steam or water application is desired and air is not available, the Python[®] AEL Electric Control Valve will deliver precise control. The electric version of the popular 1100 series control valve is built to out perform and deliver accurate control. The AEL Series Electric Control Valve is constructed and equipped with state of the art industrial materials combined with the standard 1100 series main valve.

Product Features:

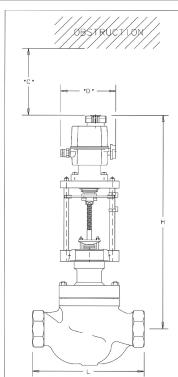
- Power: 24v AC (120v AC or 240v AC available)
- · Terminal board connection
- · Pillar mechanical connection
- · Auto/Manual control
- · Control signal 4-20 ma, 0-10 volts
- Protection class IP 67
- · High thrust capabilities
- Electronic position control
- · Metal internal gears
- · Compact design
- · Mounts to the standard 1100 Series valve body
- Actuators available from 1/2" to 4"

List of Materials	
Valve Body*	Carbon Steel A216 GR. WCB
Bonnet*	Calboll Steel A2 to Gh. WCD
Valve/Valve Seat	Stainless Steel AISI 410
Valve Stem	Stainless Steel 316
Valve Stelli	V-Teflon- Option 1 (366°F max)
Gland Packing	Grafoil-Option 2
Yoke	S.G. Iron
Actuator Housing	Aluminum

*Stainless steel available.

Python[®] Series 1100 AEL Electric Actuator

Technic	al Data	
Flow		Equal Percentage
Leakage		ANSI Class IV
Rangeabilit	у	50:1
	1/2" to 1"	11/16" (18mm)
Travel	1-1/4" to 2"	1-1/8" (28mm)
IIdvei	2-1/2" to 4"	1-1/2" (38mm)
	6" to 8"	2-1/4" (58mm)
Maximum ⁻	Temperature	450°F (232°C)
Maximum I	Pressure	300 psig (20 bar)
Voltage		24v Power Supply


Dime	nsion	is and \	Neig	hts															
Siz	e.		Fa	ce-to-F	ace "l	"		"C"	,	"D'	,	"H'	,			We	ight		
in	mm	NP	Г	150)#	300)#	U				11		NPT		150#		300#	
	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg
1/2	15	6-1/2	165	7	178	—	—	7-7/8	200	5	127	14-9/16	370	22	10	34	15	—	
3/4	20	6-1/2	165	7-1/8	181	—	—	7-7/8	200	5	127	14-9/16	370	22	10	34	15	—	
1	25	7-3/4	197	7-1/4	184	—	_	7-7/8	200	5	127	24-15/16	633	24	11	36	16	—	—
1-1/4	32	9-1/4	235	8-3/4	222	—	—	6-5/16	160	7-1/4	183	26-1/8	664	39	18	55	25	—	—
1-1/2	40	9-1/4	235	8-3/4	222	—	_	6-5/16	160	7-1/4	183	26-1/8	664	39	18	55	25	—	—
2	50	10-1/2	267	10	254	10-1/2	267	6-5/16	160	7-1/4	183	26-11/16	678	48	22	65	30	71	32
2-1/2	65	—	—	10-7/8	276	11-1/2	292	6-5/16	160	7-1/4	183	26-5/16	668	—	—	120	54	135	61
3	80	—	—	11-3/4	299	12-1/2	318	6-5/16	160	7-1/4	183	28-1/2	724	—	—	135	61	150	68
4	100	—	—	13-7/8	353	14-1/2	368	6-5/16	160	7-1/4	183	31-5/8	803		—	176	80	210	95
6	150		—	17-3/4	451	18-5/8	473	6-5/16	160	7-1/4	183	34-1/4	870		—	322	146	380	172
8	200	—	—	21-3/8	543	22-3/8	568	—	—		—	_				540	245	630	286


*Refer to images on page 321.

Python[®] - Electric Actuators

Top Guide	ed									
Size	of Valve		I	NPT				150# Flg		
IN	ММ	Switch-off thrust (N)	Speed (mm/ min)	Modulating Model	ON/OFF Model	Switch-off thrust (N)	Speed (mm/ min)	Modulating Model	ON/OFF Model	Stroke
1/2"	15	1900	28	AEL1430	AEL1490	1900	28	AEL1430	AEL1490	18mm
3/4"	20	1900	28	AEL1430	AEL1490	1900	28	AEL1430	AEL1490	18mm
1"	25	1900	28	AEL1430	AEL1490	1900	28	AEL1430	AEL1490	18mm
1-1/4"	32	3600	48	AEL1438	AEL1498	1900	48	AEL1438	AEL1498	28mm
1-1/2"	40	4600	48	AEL1438	AEL1498	3600	48	AEL1438	AEL1498	28mm
2"	50	7200	48	AEL1438	AEL1431	4600	48	AEL1438	AEL1498	28mm
2-1/2"	65				—	4600	48	AEL1438	AEL1498	—
3"	80	—				4600	48	AEL1438	AEL1498	—
4"	100				_	4600	48	AEL1438	AEL1498	_

Multi-Hol	e											
Size	e of Valve		15	i0# Flg		300# Flg						
IN	ММ	Switch-off thrust (N)	Speed (mm/ min)	Modulating Model	ON/OFF Model	Switch-off thrust (N)	Speed (mm/min)	Modulating Model	ON/OFF Model	Stroke		
1-1/2"	40	1900	48	AEL1438	AEL1498	1900	48	AEL1438	AEL1498	28mm		
2"	50	1900	48	AEL1438	AEL1498	1900	48	AEL1438	AEL1498	28mm		
2-1/2"	65	3600	48	AEL1438	AEL1498	3600	48	AEL1438	AEL1498	38mm		
3"	80	3600	48	AEL1438	AEL1498	3600	48	AEL1438	AEL1498	38mm		
4"	100	3600	48	AEL1438	AEL1498	3600	48	AEL1438	AEL1498	38mm		
6"	150	4600	48	AEL1431	AEL1491	5800	48	AEL1438	AEL1431	58mm		

Pressure and Temperature Controls

Armstrong[®] Python[®] - 1100 Series Control Valve

Capacities for Saturated Steam Service

			_
Contou	ed Ton	Guided	Trim

Contoure	ed Top Guio	led Trim												
	-						lb/hr							
Inlet	Outlet						Tri	m Size an	d C _V					
								in						
	sig)	1/8	1/4	5/16	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	6
C _V F	actor	1.0	2.0	3.0	5.0	9.0	13.0	20.0	30.0	50.0	80.0	110.0	200.0	400.0
5	3	18	36	54	91	163	236	363	545	908	1,453	1,998	3,632	7,265
	0 - 2	32	64	97	161	290	418	643	965	1,609	2,574	3,539	6,434	12,868
10	5	31	63	94	156	282	407	626	939	1,564	2,503	3,442	6,258	12,516
	0 - 4	40	81	121	202	363	524	807	1,210	2,017	3,227	4,437	8,067	16,134
15	10	35	69	104	173	312	450	693	1,039	1,732	2,771	3,810	6,927	13,854
10	0 - 6	49	97	146	243	437	631	970	1,455	2,425	3,880	5,335	9,700	19,400
20	15	38	75	113	188	339	490	754	1,130	1,884	3,015	4,145	7,537	15,073
20	0 - 8	57	113	170	283	510	737	1,133	1,700	2,833	4,533	6,233	11,333	22,666
30	20	59	118	178	296	533	769	1,183	1,775	2,959	4,734	6,509	11,835	23,670
50	0 - 12	73	146	219	365	657	949	1,460	2,190	3,650	5,840	8,029	14,599	29,198
	30	66	132	199	331	596	861	1,324	1,986	3,310	5,297	7,283	13,242	26,483
40	25	79	158	237	395	711	1,027	1,580	2,371	3,951	6,322	8,692	15,805	31,609
	0 - 16	89	179	268	447	804	1,161	1,787	2,680	4,466	7,146	9,826	17,865	35,730
	40	73	145	218	363	653	943	1,451	2,177	3,628	5,805	7,982	14,513	29,026
50	30	98	196	295	491	884	1,277	1,965	2,947	4,911	7,858	10,805	19,646	39,292
	0 - 20	106	211	317	528	951	1,374	2,113	3,170	5,283	8,452	11,622	21,131	42,262
	50	78	157	235	392	706	1,019	1,568	2,352	3,920	6,272	8,625	15,681	31,362
60	35	117	234	351	586	1,054	1,522	2,342	3,513	5,856	9,369	12,882	23,422	46,845
	0 - 24	122	244	366	610	1,098	1,586	2,440	3,660	6,099	9,759	13,418	24,397	48,794
	65	86	173	259	432	778	1,124	1,729	2,593	4,322	6,915	9,508	17,286	34,573
75	50	130	261	391	652	1,174	1,696	2,609	3,914	6,524	10,438	14,352	26,094	52,188
	0 - 30	146	293	439	732	1,318	1,904	2,930	4,394	7,324	11,718	16,113	29,296	58,592
	75	150	300	450	751	1,351	1,952	3,002	4,504	7,506	12,009	16,513	30,023	60,047
100	60	183	366	548	914	1,645	2,376	3,656	5,484	9,139	14,623	20,106	36,557	73,114
	0 - 40	187	375	562	937	1,686	2,435	3,746	5,619	9,365	14,984	20,604	37,461	74,922
	100	167	335	502	837	1,507	2,177	3,349	5,024	8,374	13,398	18,422	33,495	66,990
125	75	225	450	675	1,125	2,024	2,924	4,498	6,747	11,245	17,992	24,740	44,981	89,962
	0 - 50	228	456	684	1,141	2,053	2,966	4,563	6,844	11,407	18,250	25,094	45,626	91,252
	125	183	366	550	916	1,649	2,382	3,664	5,496	9,160	14,656	20,151	36,639	73,278
150	100	248	496	745	1,241	2,234	3,227	4,964	7,446	12,410	19,857	27,303	49,642	99,284
	0 - 60	269	538	807	1,345	2,421	3,496	5,379	8,069	13,448	21,516	29,585	53,791	107,582
	150	198	395	593	988	1,779	2,570	3,953	5,930	9,883	15,813	21,743	39,534	79,067
175	110	300	600	901	1,501	2,702	3,903	6,004	9,006	15,010	24,016	33,022	60,041	120,082
110	0 - 70	310	620	929	1,549	2,788	4,027	6,196	9,293	15,489	24,782	34,076	61,956	123,912
	150	289	578	868	1,446	2,603	3,760	5,785	8,677	14,462	23,139	31,816	57,847	115,695
200	125	342	685	1,027	1,712	3,081	4,451	6,847	10,271	17,119	27,390	37,661	68,474	136,948
200	0 - 80	351	701	1,052	1,753	3,155	4,558	7,012	10,518	17,530	28,048	38,567	70,121	140,242
	200	325	650	975	1,626	2,926	4,227	6,503	9,754	16,256	26,010	35,764	65,025	130,051
250	150	413	827	1,240	2,067	3,721	5,374	8,268	12,402	20,670	33,072	45,474	82,681	165,361
200	0 - 100	413	865	1,240	2,007	3,890	5,619	8,645	12,402	20,070	34,580	47,548	86,451	172,902
	250	357	715	1,072	1,787	3,217	4,647	7,149	10,723	17,872	28,595	39,318	71,486	142,902
300	200	483	966		2,416	1	6,281	9,664		24,159	38,655	53,150	96,637	193,273
300	0 - 120			1,450		4,349			14,495			1		
	0 - 120	514	1,028	1,542	2,570	4,625	6,681	10,278	15,417	25,695	41,112	56,530	102,781	205,562

*Capacities based on maximum Cv. It is recommended to operate the valve between 15-85% of the valve opening. See chart on page 333.

Capacities for Saturated Steam Service

Contour	ed Top Gui						ka /br							
							kg/hr	m Sizo on	10					
Inlet	Outlet						In	m Size and	uυγ					
()) Dar)	3	6	8	15	20	25	mm 32	40	50	65	80	100	150
	actor	1.0	2.0	3.0	5.0	9.0	13.0	20.0	30.0	50.0	80.0	110.0	200.0	400.0
	0.21	8	16	25	41	74	107	165	247	412	659	906	1,648	3,295
0.34	0 - 0.14	15	29	44	73	131	190	292	438	730	1,167	1,605	2,918	5,837
	0.34	14	28	43	70	128	185	284	426	710	1,135	1,561	2,839	5,677
0.69	0 - 0.28	18	37	55	91	165	238	366	549	915	1,464	2,013	3,659	7,318
	0.69	16	31	47	79	141	204	314	471	785	1,257	1,728	3,142	6,284
1.03	0 - 0.41	22	44	66	110	198	286	440	660	1,100	1,760	2,420	4,400	8,800
	1.03	17	34	51	85	154	222	342	513	855	1,367	1,880	3,419	6,837
1.38	0 - 0.55	26	51	77	129	231	334	514	771	1,285	2,056	2,827	5,141	10,281
	1.38	27	54	81	134	242	349	537	805	1,342	2,147	2,953	5,368	10,736
2.07	0 - 0.83	33	66	99	166	298	430	662	993	1,656	2,649	3,642	6,622	13,244
	2.07	30	60	90	150	270	390	601	901	1,502	2,403	3,304	6,006	12,013
2.76	1.72	36	72	108	179	323	466	717	1,075	1,792	2,868	3,943	7,169	14,338
	0 - 1.10	41	81	122	203	365	527	810	1,216	2,026	3,241	4,457	8,104	16,207
	2.76	33	66	99	165	296	428	658	987	1,646	2,633	3,621	6,583	13,166
3.45	2.07	45	89	134	223	401	579	891	1,337	2,228	3,565	4,901	8,911	17,823
	0 - 1.38	48	96	144	240	431	623	958	1,438	2,396	3,834	5,272	9,585	19,170
	3.45	36	71	107	178	320	462	711	1,067	1,778	2,845	3,912	7,113	14,226
4.14	2.41	53	106	159	266	478	691	1,062	1,594	2,656	4,250	5,843	10,624	21,249
	0 - 1.65	55	111	166	277	498	719	1,107	1,660	2,767	4,427	6,087	11,066	22,133
	4.48	39	78	118	196	353	510	784	1,176	1,960	3,136	4,313	7,841	15,682
5.17	3.45	59	118	178	296	533	769	1,184	1,775	2,959	4,734	6,510	11,836	23,672
	0 - 2.07	66	133	199	332	598	864	1,329	1,993	3,322	5,315	7,309	13,289	26,577
	5.17	68	136	204	340	613	885	1,362	2,043	3,405	5,447	7,490	13,619	27,237
6.89	4.14	83	166	249	415	746	1,078	1,658	2,487	4,146	6,633	9,120	16,582	33,164
	0 - 2.76	85	170	255	425	765	1,104	1,699	2,549	4,248	6,797	9,346	16,992	33,984
	6.89	76	152	228	380	684	988	1,519	2,279	3,798	6,077	8,356	15,193	30,386
8.62	5.17	102	204	306	510	918	1,326	2,040	3,061	5,101	8,161	11,222	20,403	40,807
	0 - 3.45	103	207	310	517	931	1,345	2,070	3,104	5,174	8,278	11,383	20,696	41,392
	8.62	83	166	249	415	748	1,080	1,662	2,493	4,155	6,648	9,141	16,619	33,239
10.34	6.89	113	225	338	563	1,013	1,464	2,252	3,378	5,629	9,007	12,385	22,517	45,035
	0 - 4.14	122	244	366	610	1,098	1,586	2,440	3,660	6,100	9,760	13,420	24,399	48,799
	10.34	90	179	269	448	807	1,166	1,793	2,690	4,483	7,173	9,863	17,932	35,865
12.07	7.58	136	272	409	681	1,226	1,770	2,723	4,085	6,809	10,894	14,979	27,234	54,469
	0 - 4.83	141	281	422	703	1,265	1,827	2,810	4,215	7,026	11,241	15,457	28,103	56,206
	10.34	131	262	394	656	1,181	1,706	2,624	3,936	6,560	10,496	14,432	26,239	52,479
13.79	8.62	155	311	466	776	1,398	2,019	3,106	4,659	7,765	12,424	17,083	31,060	62,119
	0 - 5.52	159	318	477	795	1,431	2,067	3,181	4,771	7,952	12,723	17,494	31,807	63,613
	13.79	147	295	442	737	1,327	1,917	2,950	4,424	7,374	11,798	16,222	29,495	58,991
17.24	10.34	188	375	563	938	1,688	2,438	3,750	5,626	9,376	15,001	20,627	37,504	75,007
	0 - 10.3	196	392	588	980	1,765	2,549	3,921	5,882	9,803	15,686	21,568	39,214	78,428
	17.24	162	324	486	811	1,459	2,108	3,243	4,864	8,107	12,970	17,834	32,426	64,852
20.00	13.79	219	438	658	1,096	1,973	2,849	4,383	6,575	10,959	17,534	24,109	43,834	87,668
	0 - 8.28	233	466	699	1,166	2,098	3,030	4,662	6,993	11,655	18,648	25,642	46,621	93,242

*Capacities based on maximum Cv. It is recommended to operate the valve between 15-85% of the valve opening. See chart on page 333.

Armstrong[®] Python[®] - 1100 Series Control Valve

Capacities for Saturated Steam Service

	age Guided Trim				e /lex				
	1				b/hr				
Inlet	Outlet					•			
					0 40.0 64.0 90.0 160.0 3 6,005 9,607 13,511 24,019 7 7,311 11,698 16,451 29,246 5 7,492 11,988 16,857 29,969 9 6,699 10,718 15,073 26,796 8 8,996 14,394 20,242 35,985 5 9,125 14,600 20,532 36,501 7 7,328 11,724 16,487 29,311 7 9,928 15,885 22,339 39,713 5 10,758 17,213 24,206 43,033 4 7,907 12,651 17,790 31,627				
(p	sig)	1	1-1/4	1-1/2	2	2-1/2	3	4	6
C _v I	actor	10.0	16.0	24.0	40.0	64.0	90.0	160.0	320.0
	75	1,501	2,402	3,603	6,005	9,607	13,511	24,019	48,037
100	60	1,828	2,925	4,387	7,311	11,698	16,451	29,246	58,491
	0 - 40	1,873	2,997	4,495	7,492	11,988	16,857	29,969	59,938
	100	1,675	2,680	4,019	6,699	10,718	15,073	26,796	53,592
125	75	2,249	3,598	5,398	8,996	14,394	20,242	35,985	71,970
	0 - 50	2,281	3,650	5,475	9,125	14,600	20,532	36,501	73,002
	125	1,832	2,931	4,397	7,328	11,724	16,487	29,311	58,622
150	100	2,482	3,971	5,957	9,928	15,885	22,339	39,713	79,427
	0 - 60	2,690	4,303	6,455	10,758	17,213	24,206	43,033	86,066
	150	1,977	3,163	4,744	7,907	12,651	17,790	31,627	63,254
175	110	3,002	4,803	7,205	12,008	19,213	27,018	48,033	96,065
	0 - 70	3,098	4,956	7,435	12,391	19,826	27,880	49,565	99,130
	150	2,892	4,628	6,942	11,569	18,511	26,031	46,278	92,556
200	125	3,424	5,478	8,217	13,695	21,912	30,813	54,779	109,559
	0 - 80	3,506	5,610	8,415	14,024	22,439	31,554	56,097	112,194
	200	3,251	5,202	7,803	13,005	20,808	29,261	52,020	104,041
250	150	4,134	6,614	9,922	16,536	26,458	37,206	66,145	132,289
	0 - 100	4,323	6,916	10,374	17,290	27,664	38,903	69,161	138,322
	250	3,574	5,719	8,578	14,297	22,876	32,169	57,189	114,378
300	200	4,832	7,731	11,596	19,327	30,924	43,486	77,309	154,618
	0 - 120	5,139	8,222	12,334	20,556	32,890	46,251	82,225	164,450

*Capacities based on maximum C_V. It is recommended to operate the valve between 15-85% of the valve opening. See chart on page 333.

kg/hr											
Inlet	Outlet				Trim Siz	ze and C_v					
IIIIet	Outlet		mm								
(bar)	25	32	40	50	65	80	100	150		
Cv	Factor	10.0	16.0	24.0	40.0	64.0	90.0	160.0	320.0		
	5.17	681	1089	1634	2724	4358	6128	10895	21790		
6.89	4.14	829	1327	1990	3316	5306	7462	13266	26531		
	0 - 2.76	850	1359	2039	3398	5438	7646	13594	27188		
	6.89	760	1215	1823	3039	4862	6837	12155	24309		
8.62	5.17	1020	1632	2448	4081	6529	9182	16323	32645		
	0 - 3.45	1035	1656	2483	4139	6623	9313	16557	33113		
	8.62	831	1330	1994	3324	5318	7479	13295	26591		
10.34	6.89	1126	1801	2702	4503	7206	10133	18014	36028		
	0 - 4.14	1220	1952	2928	4880	7808	10980	19520	39039		
	10.34	897	1435	2152	3586	5738	8070	14346	28692		
12.07	7.58	1362	2179	3268	5447	8715	12255	21788	43575		
	0 - 4.83	1405	2248	3372	5621	8993	12646	22482	44965		
	10.34	1312	2099	3149	5248	8397	11808	20991	41983		
13.79	8.62	1553	2485	3727	6212	9939	13977	24848	49695		
	0 - 5.52	1590	2545	3817	6361	10178	14313	25445	50891		
	13.79	1475	2360	3539	5899	9439	13273	23596	47193		
17.24	10.34	1875	3000	4500	7501	12001	16877	30003	60006		
	0 - 10.3	1961	3137	4706	7843	12548	17646	31371	62742		
	17.24	1621	2594	3891	6485	10376	14592	25941	51882		
20.00	13.79	2192	3507	5260	8767	14027	19725	35067	70134		
	0 - 8.28	2331	3730	5595	9324	14919	20980	37297	74594		

*Capacities based on maximum C_V. It is recommended to operate the valve between 15-85% of the valve opening. See chart on page 333.

Python[®] - 1100 Series Control Valve

Valve Sizing

To determine the size of valve you need, calculate the required Cv value for your application. Once you have calculated the required Cv, refer to the valve Cv charts on page 323 to determine the size and trim of valve. Globe style control valves have the best control in the midrange of the valve's capacity. It is best to pick a valve so the calculated Cv is between 15% and 85% of the valve opening, see page 332. See the formulas below for steam and water applications. Consult factory for other types of fluids.

For Saturated Steam Service

$\frac{\textbf{Subcritical Flow}}{When \Delta P} < 0.81(P_1/2)$	$\frac{\text{Critical Flow}}{\text{When } \Delta P \geq 0.81(P_1/2)}$			
Cv =W	Cv =W			
2.1\sqrt{\DeltaP(P_{1A}+P_{2A})}	1.633 (P1A)			

For Liquid Service

 $Cv = (GPM) \sqrt{G}$

- Cv = Valve flow coefficient
- W =Maximum flow capacity of steam, lbs/hr $P_{1A} =$ Inlet Pressure, psia (psig + 14.7) $P_{2A} =$ Outlet Pressure, psia (psig + 14.7) $P_{2A} =$ Dense dense (Par Paris)
- ΔP = Pressure drop (P₁ P₂) psi
- GPM = Maximum flow capacity of Liquid, GPM
- G = Specific Gravity

Actuator Sizing

To determine the required actuator, you need to determine the differential pressure (shut off pressure). The shut off pressure for a pressure reduction application is the pressure difference between P_1 and P_2 . The shut off pressure for a temperature control application is the P_1 pressure.

Once you have calculated your shut off pressure, select the actuator model and spring setting range that exceeds your calculated shutoff pressure with the trim size previously selected. Select reverse acting for air to open (fail close) applications or direct acting for air to close (fail open) applications.

Make sure the required air pressure is available for the spring range selected.

Sizing Example 1:

Fluid:Saturated Steam $P_1 =$ 140 psig $P_2 =$ 20 psigFlow:13,000 lbs/hrActuator:Air to open (Fail Close)

Solution:

Valve Selection: Select the correct formula needed to calculate Cv. We need to use the critical flow formula since $\Delta P > .81(P_1/2)$.

$$C_v = \frac{13,000}{1.633(140 + 14.7)} = 52$$

Refer to the C_v charts on Page 4. Select a 2-1/2" Multi-hole cage guided with 2-1/2" Trim. Top bush guided would work as well, but multi-hole cage was chosen to help with noise attenuation.

Actuator Selection: Determine your shutoff pressure (ΔP).

∆P = 140 - 20 = 120 psi

Refer to chart 6-2 (multi-hole cage guided) and go to the 2-1/2" trim size column. Follow the column until you get to a pressure greater than 120 psi, then follow the row horizontally to determine you need a Model M-22 with the 3-15 psi spring range.

Complete valve selection is 1100 series, 2-1/2" 150# Flange with 2-1/2" Multi-hole cage trim and M-22 actuator with 3-15 psi spring range.

Sizing Example 2:

Fluid: Saturated Steam Application: Temperature Control P1: 125 psig Flow: 1750 lbs/hr Actuator: Air to open (Fail Close)

Solution:

Since this is a temperature control application and we do not know the P₂ pressure, we will size the valve with a 30% pressure drop. We need to use the subcritical flow formula.

$$C_{V} = \underbrace{1750}_{2.1\sqrt{(37)((125+14.7)+(88+14.7))}} = 8.8$$

Refer to the Cv charts on Page 4. Select a 1" Contoured top guided with full port trim. The 1" is chosen over the 3/4" because the valve will control best between 15% - 85% of maximum valve capacity. The 3/4" valve would be operating at 98% of valve capacity.

Actuator Selection:

For temperature control applications, the shut off pressure is the P₁ pressure. Refer to chart 6-1 (Contoured Top Guided) and go to the 1" trim size column. Follow the column until you get to a pressure greater than 125 psi, then follow the row horizontally to determine you need a Model M-00 with a 6 - 18 psi spring range.

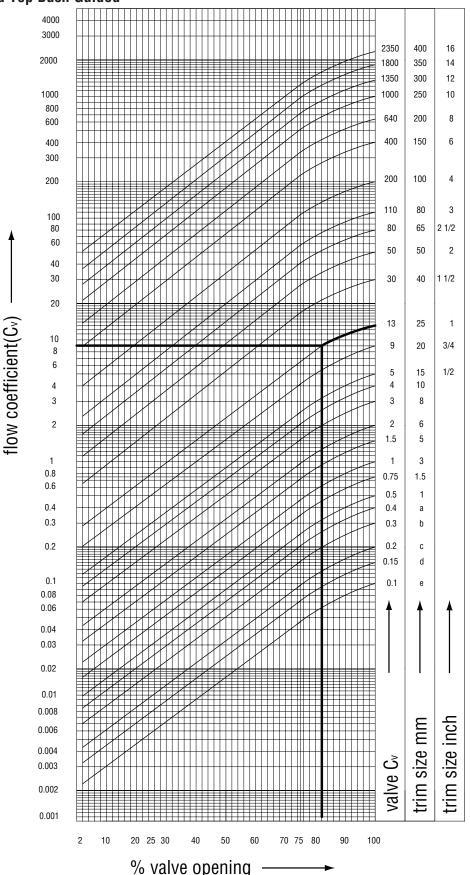
Complete valve selection is 1100 series 1" NPT with 1" contoured top guided trim and M-00 actuator with 6 - 18 psi spring range.

Determine the percentage of 'valve open' at any calculated C_{ν}

You must first solve for a required C_v with one of the formulas on page 331. Using sizing example 2, we calculated a C_v of 8.8 and we chose a 1" contoured top guided valve with a full 1" trim with a maximum C_v of 13.

- Step 1: Locate selected valve trim size in the far right-hand column. The maximum C_v for this trim can be found by moving two columns to the left.
- Step 2: Locate the calculated C_v (flow coefficient) on the far left side.
- Step 3: Follow calculated C_v to the right until it intersects with the curve associated with the trim size found in step 1.

Step 4: From the point of intersection, travel vertically to the bottom of the chart.


This point indicates the percentage of valve open, at the calculated C_v . In this case the valve will operate at 83% of the valves maximum capacity.

The valve has the greatest control between 15 and 85% of the valve opening.

Python[®] - 1100 Series Control Valve

Trim: Contoured Top Bush Guided

Armstrong[®] Python[®] - 1100 Series Control Valve

Trim: Multi-Hole Cage Guided

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

North America • Latin America • India • Europe / Middle East / Africa • China • Pacific Rim armstronginternational.com

334

Python[®] - 1100 Series Control Valve

SRP981 Pneumatic Positioner

The SRP981 positioner is designed to control pneumatic valve actuators with pneumatic control signals. It is used to reduce the adverse effects of valve friction, for higher thrust and shorter positioning time. It offers an easy adjustment by two mechanical screws.

Input:

Signal range:

3 to 15 psig (0.2 to 1 bar) split range down to Δ w 3 psi (0.2 bar)

Response characteristic:

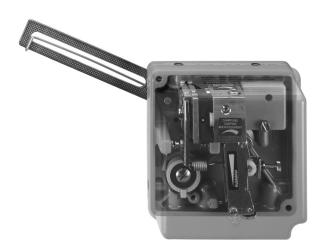
Amplification: adjustable Sensitivity: <0.1% F.S. Non-linearity (terminal based adjustment): <1.0% F.S. Hysteresis: <0.3% F.S. Supply air dependency: <0.3% / 1.5 psi (0.1 bar) Temperature effect: <0.5% / 10 K Mechanical vibration: 10-60 Hz up to 0.14 mm 60 - 500 Hz up to 2 g <0.25% of travel span

Supply:

Supply air pressure: 20 to 50 psig (1.4 to 3.5 bar) Supply air: free of oil, dust and water according to IEC 654-2

Connection:

Pneumatic: Female threads G 1/8 according to ISO 228


Materials:

Base Plate:

Aluminum (Alloy No. 230) finished with DD varnish

Features

- · Independent adjustment of stroke range and zero
- · Adjustable amplification and damping
- Split range up to 4-fold possible
- Input signal from 3-15 psi (0.2-1 bar)
- Supply pressure up to 50 psi (3.5 bar)
- · Low vibration effect in all directions
- Ambient temperature -40 to 176°F (-40 to 80°C)
- Protection class IP54 or IP65
- Explosion protection:
- II 2 G EEx c (constructive safety) + accessories in
- II 2 G EEx i according to ATEX
- Additional inputs/outputs (optional)
- Position feedback 4 to 20 mA
- Built-in independent inductive limit switches (2-/3 wire) or micro switches
- Accessories
 - Booster relay to minimize stroke time
- Gauge manifold
- Gauges (optional)
- External gauge manifolds
- Integrated gauges
- Indicating ranges:
 - Input: 0 to 23 psig (0 to 1.6 bar) Output: 0 to 150 psig (0 to 10 bar)

SRI990 Analog Positioner

The analog positioner SRI990 with analog input 4 to 20 mA is designed to control pneumatic valve actuators. The modular structure of this product line enables conversion from an analog to an "intelligent" positioner with HART, Fieldbus or FoxCom.

It offers an easy adjustment by means of switches and potentiometers.

Input

Two wire system Reverse polarity protection: Built-in standard feature Signal range: 4 to 20 mA Characteristic of setpoint: linear Operating range: 3 to 21.5 mA Voltage: DC 6 to 36 V (unloaded circuit) Load: 300 Ohms, 6 V at 20 mA

Supply

Supply air pressure: 20 to 50 psig (1.4 to 3.5 bar) Supply air: according to IEC 654-2

Response characteristics

Sensitivity: <0.2% of travel span Non-linearity: <±0.8% of travel span Hysteresis: <0.5% of travel span Temperature effect: <±0.5% / 10 K Supply air dependence: <0.3% / 15 psi (1 bar) Mechanical vibration: 10-60 Hz up to 0.14 mm,

60-500 Hz up to 2 g: <0.25% of travel span

Features

- Ambient temperature -40 to 176°F (-40 to 80°C)
- Additional inputs/outputs (optional):
- Position feedback 4 to 20 mA
- Built-in independent inductive limit switches (2-/3 wire) or micro switches
- Accessories
- Booster relay to minimize stroke time
- Gauge manifold
- Configuration by means of switches and potentiometers
- Load 300 Ohms
- Low air consumption
- Supply air pressure up to 50 psi
- Single acting or double acting
- Mechanical travel indicator
- Reverse polarity protection and interlock diode
- Switch for pneumatic test
- Protection class IP 65 with ATEX and NEMA 4X with FM and CSA
- · Explosion protection:
- II 2 G EEx i/II 2 G EEx n (intrinsic safety) according to ATEX
- Intrinsic safety according to FM and CSA
- Stainless steel housing for offshore or food and beverage applications

Python[®] - 1100 Series Control Valve

SRD991 Intelligent Positioner with HART, **PROFIBUS PA, FOUNDATION Fieldbus H1 or** FoxCom for EEx ia Intrinsically Safe Applications

The microprocessor controlled positioner SRD991 is designed to control pneumatic valve actuators and can be operated locally or by means of control systems (e.g. the Foxboro I/A Series System). The advanced diagnostic can be partially shown on the local LCD of the positioner or fully on a PC or a DCS workstation with a DTM based software (VALcare or Valve Monitor).

The positioner is available with different communication protocols. This includes versions with analog setpoint (4 to 20 mA) and superimposed HART- or FoxCom signal; digital with FoxCom protocol, or fieldbus communication according to PROFIBUS-PA and FOUNDATION fieldbus H1 according to IEC 1158-2 based on FISCO.

The SRD991 also has the capability to control a Partial Stroke Test(PST) that offers operators a tool to identify the trouble-proof function of ESD (Emergency Shut Down) valves.

Features

Version "Intelligent"

- · Autostart with self calibrationg
- · Self diagnostic, status and diagnostic messages

Version "Intelligent with Communication"

- Communication HART, FOUNDATION Fieldbus H1, PROFIBUS-PA or FoxCom
- · Configuration by means of local keys, Hand Held Terminal, PC or I/A Series system or with an infrared interface by means of IRCOM

Version "Intelligent without Communication"

Input signal 4-20 mA

Applicable to all SRD991 Models:

- Supply air pressure up to 50 psig (3.4 bar)
- · Single or double acting
- Protection class IP 65, NEMA 4X
- · Explosion protection:
- II 2 G EEx i / II 2 G EEx n (intrinsic safety) according to ATEX
- Intrinsic safety according to FM and CSA
- Ambient temperature -40 to 176°F (-40 to 80°C)
- Display and Local User Interface:
- Multilingual Full-Text Graphic LCD or LEDs
- Status- and Diagnostic-Messages displayed on LCD
- Easy configuration by means of 3 push buttons
- Mechanical travel indicator
- Suitable for safety applications up to SIL3
- Partial Stroke Test (PST) for Emergency Shut Down applications
- · Infrared Interface for wireless communication
- · Stainless steel housing for offshore or food and beverage applications

- · Additional Inputs/outputs (optional):
- 2 binary outputs (limits)
- Position feedback 4 to 20 mA, 1 Alarm output
- 2 binary inputs
- Built-in independent inductive limit switches (2- 3-wire) or micro switches
- Sensors for supply air pressure and output pressure
- Binary Inputs/Outputs dedicated to SIS logic solvers Accessories
- Booster relay to minimize stroke time
- Gauge Manifold

43AP Pressure Controller

- 4 to 400% proportional band
- 3-15 psi signal output
- 316 stainless steel spiral pressure element
- Enclosure meets IEC IP53 NEMA Type 3

43AP Temperature Controller

- 4 to 400% proportional band
- 15 Ft. capillary
- · 316 stainless steel well with 6" insertion length
- Enclosure meets IEC IP53 NEMA Type 3

Features

- Wide selection of measuring elements
- Wide choice of control modes
- · Broad range of integral (reset) and derivative adjustments
- Power failures do not influence process driven indication
- Weatherproof construction
- Versatile mounting
- · Internal bumpless automatic-manual transfer station

These instruments indicate and control pressure, temperature, vacuum and differential pressure. They provide process industries with a highly dependable and versatile group of instruments.

Accuracy:

Input to pointer: ±0.5% of span for qualified elements. Input to output: Depends on measuring element used.

Repeatability:

0.2% of span

Deadband:

0.1% of span

Ambient Temperature Effect:

Maximum control point shift at midspan per 100°F (55°C) change within normal operating conditions is 1% of input span.

Supply Pressure Effect:

Maximum control point shift at midspan per 1 psi (7 kPa) change within normal operating conditions is 0.2% of input span.

Python[®] - 1100 Series Control Valve

Foxboro/Eckardt Controllers

The 718C Series expands the capability of standard 1/8 DIN controllers with advanced features:

- Modbus serial communication to I/A Series for Windows NT, where data collection capabilities and remote operation are needed.
- · Adaptive Auto-Tune for quick start ups
- · Anti-Windup for keeping your batch process under control

The NEMA 4X faceplates allow these units to be used in applications where washdowns and dust conditions exist.

The Soft Start function prevents thermal shock.

Designed specifically for equipment manufacturers who need communications to data aquisition equipment, the light and compact (1/8 DIN size) is able to perform in the most demanding applications with easy yet reliable control.

The 718C Series start-up is as simple as: • wiring the instrument

- · configuring set points and alarm thresholds
- · initiating the autotune function

Engineers, technicians and operators, skilled or unskilled in process control theory, can obtain perfect process control.

Foxboro 718C Electric Controller

- For digital control with universal input and local set point. Installed in a fiberglass enclosure with a thermal strip and auto tune instructions.
- One (1) mA output, 3 relays, 2 digital inputs and auxillary power supply for transmitters.
- No communication
- 24 Vdc, 110 AC, 240 AC power supply

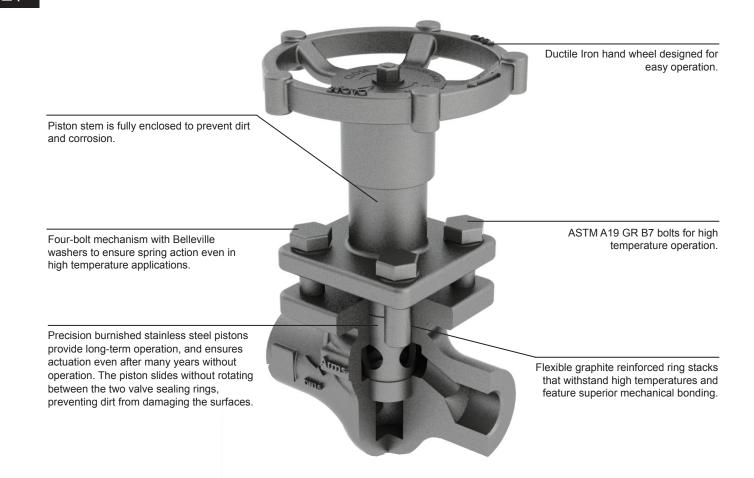
Description

Armstrong Piston Valves are full port forged steel isolation valves with a maximum operating pressure of 136 Barg/1973 psig and a maximum operating temperature of 427°C/800°F. The burnished piston and metal reinforced graphite rings provide leak-proof shut off and allow Armstrong Piston Valves to be operated at higher temperatures, while also extending operating life.

Armstrong Piston Valves are available in Socket Weld, BSPT, and NPT end connections. Flanged ends can be supplied upon request.

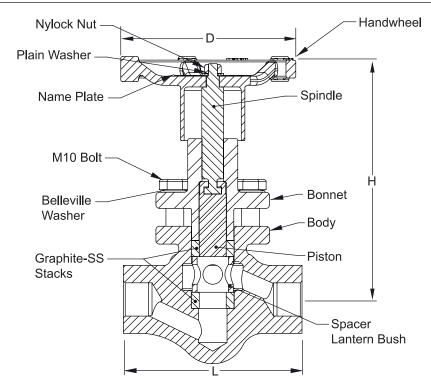
Armstrong Piston Valves are ideal for saturated and superheated steam, and hot water applications.

Armstrong Piston Valves Feature:


- Leak-proof isolation
- Sizes from 15mm/1/2" NB to 40mm/1-1/2" NB
- · Choice of socket weld, screwed or flanged end connections
- Compatible with API, ASME, IBR, and DIN standards
- Resistant to cavitation

erature Controls

sure and


- All sealing valve components may be easily replaced in-line
- Long-term operation. Piston valve design ensures actuation even after many years without operation
- Fire-proof performance

Piston Valves

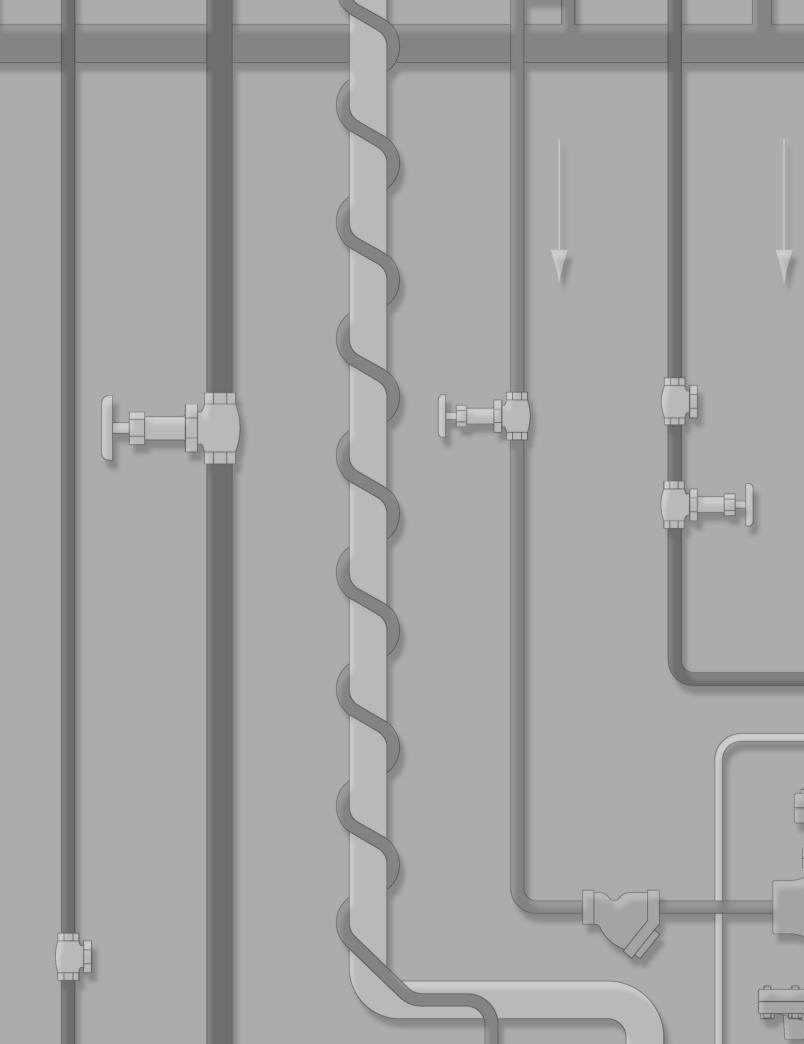
Forged Piston Va	Forged Piston Valves ANSI Class 800 (API602 & ASME B16.34)										
NB/DN	Body Material	Body Material	Body Material L H D Minimum	Bolting Type	Approximate Weight						
		mm	in	mm	in	mm	in	Thread		kg	lbs
15	A105/LF2	100	3.9	134	5.3	93	3.7	14	4B - SE/SW	1.9	4.2
20	A105/LF2	120	4.7	138.5	5.5	93	3.7	14	4B - SE/SW	3.4	7.5
25	A105/LF2	135	5.3	183	7.2	112	4.4	18	4B - SE/SW	4.8	10.6
40	A105/LF2	185	7.3	226	8.9	112	4.4	19	4B - SE/SW	11.5	25.4

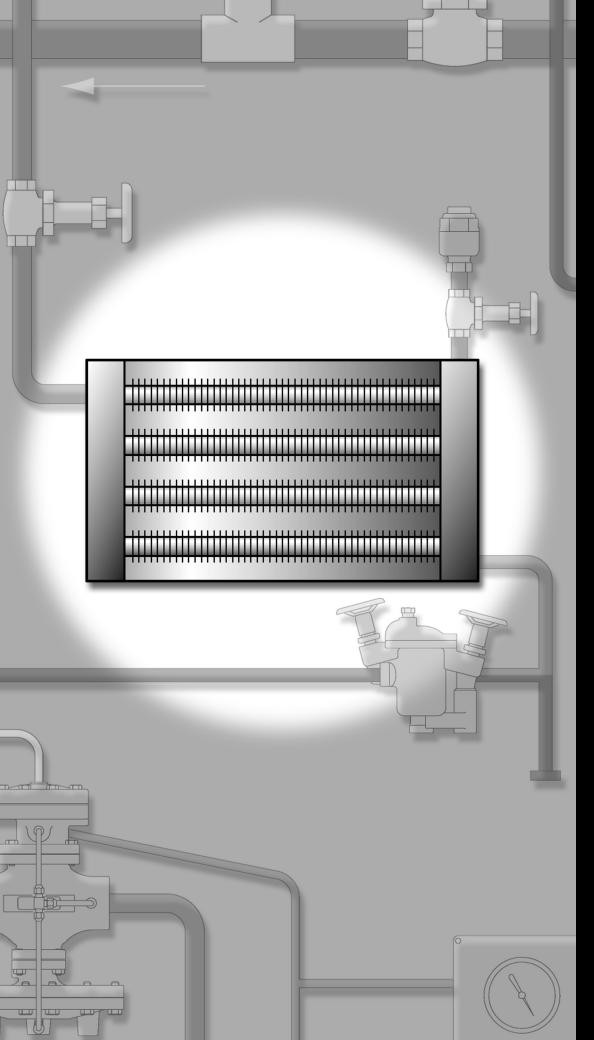
Design Features Forged Steel Piston Valves Class 800 (Sizes 15, 20, 25, 40NB)									
End Connections *	Maximum Pressure at Temperature				Maxin	num Tempera	Hydro Test Pressure at Ambient Temperature		
	barg	°C	psig	°F	°C	barg	°F	psig	
Socketweld ends	136.20	≤38	1975.41	100	427	75.84	801	1099.97	204.30

* Other end connections may have restricted pressure and temperature ratings due to applicable standards.

Design features of Armstrong Piston Valves:

Material of Construction - Body


• Forged Steel (ASTM A105, ASTM A350 LF2)


Material of Construction – Graphite Ring Stack

• Flexible Graphite and SS 316

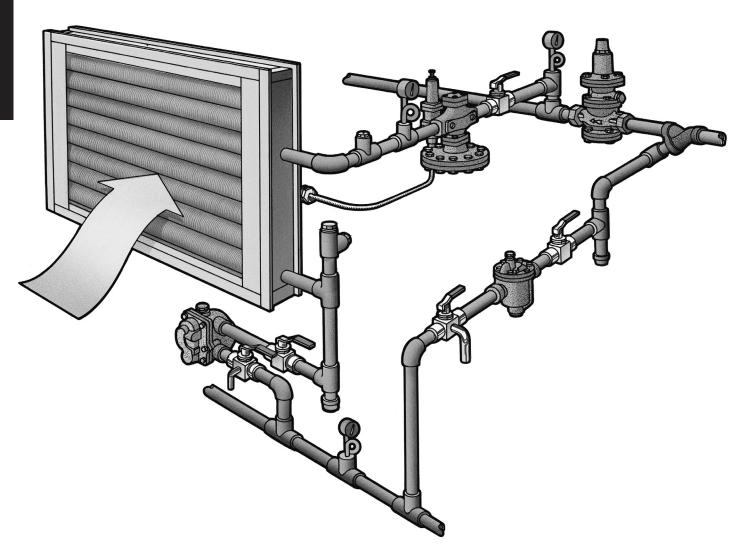
Design Standards

- ASME (B16.34, B16.10, B16.5)
- API (600, 602)
- IBR 1950
- DIN (3202, 10226-1)
- Inspection and testing (API 598)
- Leak test (ANSI/FCI 70-2)
- Fire test (API SPEC 6FA : 1999)

Heating and Cooling Coils

Armstrong[®] Why Leaky Coils Are a Losing Proposition

Leaky coils can be the beginning of the end for efficient heat transfer. Although coils may fail for a variety of reasons, mechanical failure and corrosion are the culprits in the majority of cases. When coils corrode, unwanted moisture and contaminants may foul the air stream or exhaust gases. And a steam leak from a badly corroded coil simply blows precious energy off into the atmosphere.


External corrosion. Contaminants in the airstream cause external corrosion. Dirt buildup intensifies corrosive action by trapping contaminants in concentrated pockets. And it's accelerated when dirt becomes strong airborne mist. Factors such as inappropriate fin pitch, fabricating techniques and material selection may also fuel external corrosion.

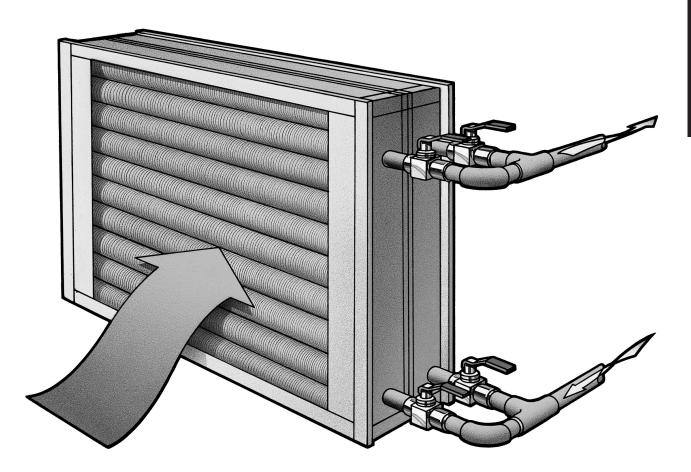
Internal corrosion. Retention of contaminated condensate or inadequate venting of non-condensable gases are major causes of internal corrosion. When CO₂ gas dissolves in

condensate that has cooled below steam temperature, it forms highly corrosive carbonic acid. Likewise, oxygen left to stagnate in the system fosters corrosive action by pitting iron and steel surfaces. Joining pipes/tubes in headers of dissimilar materials may spawn galvanic action. Internal stresses due to improper welding may also hasten corrosion damage.

Armstrong to the Rescue

Armstrong's help in coil selection and design is one of the best defenses against external corrosion. We offer a wide selection of fin pitches to help combat dirt buildup. What's more, sturdy fins lend extra strength to withstand high-pressure cleaning without damage or distortion. As a defense against non-environmental factors, Armstrong fabricates coils in a full range of metals and alloys. You may also specify special coatings to increase external corrosion resistance.

Why Leaky Coils Are a Losing Proposition



Proper trapping and venting—a specialty of your Armstrong Representative—is where defense against internal corrosion begins. Armstrong reps are steam specialists with more than 75 years of experience in properly sizing, locating and piping steam traps, strainers, vents and related equipment. That's why only Armstrong gives you quality steam coils—plus the installation and trapping help you need to make them work in your total system.

A System to Make Yours More Efficient

Today, the Armstrong "system" merges coil-building experience, practical knowledge and technical knowhow from years of trapping coil installations. The result: coils that survive the rigors of high pressures, high temperatures and corrosive conditions. For example, Armstrong fabricates standard steel heating coils from 1" OD 12 ga ERW Tube (.109" wall) helically wound with 0.024" thick steel fins at varying fin pitches. Each coil is tested during construction, and the completed unit is again tested hydrostatically to not less than 1.3 times the design pressure with a standard testing pressure at 450 psig for steel or stainless steel cores.

It's this simple: It takes one system to improve another. Exactly how the Armstrong system of product and service carefully matches coils to your specs and applications is the subject of the following pages.

The choice of tube material depends upon several important factors:

- The corrosive quality of the steam or liquid medium
- The ability to pipe, trap and vent steam coils effectively
- The size and service requirements of the installation
- The external corrosion to which the coils are likely to be subjected

Generally speaking, the heat transfer characteristics of the tube material are of little consequence. The table on the next page illustrates the relative effect of tube materials on overall heat transfer. Because the fin area constitutes the vast majority of the heat transfer surface, it is the most important factor determining heat transfer effectiveness. Therefore, the choice of tube materials should be based on service requirements, not heat transfer efficiency.

Internal corrosion. The base material found in the 6000 Series coils is steel. The minimum wall thickness is .109" for steam coils and liquid coils, which affords both strength and corrosion resistance. All Armstrong coils are of monometallic design, which means that all wetted parts are made of the same materials. This precludes the likelihood of galvanic corrosion often experienced in coils made of dissimilar materials. For most applications, steel will provide very satisfactory service. In order to do this, however, steam coils must be carefully piped, trapped and vented to ensure good condensate and non-condensable gas evacuation.

The cross section of the coil on the right shows how internal corrosion caused by improper piping, trapping and venting may destroy coils from the inside out.

There are many cases where the steam cannot be conditioned enough to be non-corrosive or it is not possible to pipe, trap and vent the coils properly. For those areas, Armstrong recommends stainless steel wetted parts. Choosing which of these is most appropriate depends on the degree and type of problem as well as the steam pressure involved.

External corrosion. In the case of external corrosion, factors concerning the corrosiveness of the airstream enter into the decision. The choice of steel or stainless steel for the wetted parts depends on the compatibility of those materials with the contaminants in the airstream. In addition to the base materials available, Armstrong also offers hot dipped galvanizing, epoxy dip or baked phenolic coatings. These are frequently used when only external corrosion is a consideration.

Service requirements. These may be as important as the above considerations. Coil failures manifest themselves in many forms, but the most prevalent is failure of the tube-to-header joints. This failure occurs as a result of coil design defects, insufficient material at the tube-to-header joints or because of the method of connecting the tubes to the headers.

Armstrong 6000 Series coils are designed to accommodate the service requirements of the particular installation. They are built with enough material at the tube-to-header joints to make them strong. When differential expansion between tubes in steam coils is likely to over-stress the joints, centifeed type coils are recommended. Finally, Armstrong coils are always of welded construction, providing the best method of connecting the two parts together.

Computer-controlled equipment like this simplifies the process of drilling coil headers.

Tube Materials

The best combination of coil materials is the one that delivers maximum heat transfer **and** service life. Tubes, regardless of material, contribute little to heat transfer in extended-surface coils. It is the **fins**, fully exposed to the airstream, that provide the greatest contribution to heat transfer. Therefore, choose tube material on the basis of application.

Material Selection for Fins

The heat transfer coil is essentially a tube on which fins are spirally wound or similarly attached. The fins produce an extended surface to improve heat transfer to or from air or other gases passing over the fins. The effective heat transfer of a coil is based on fin pitch (number of fins per inch), fin height, fin material and method of attachment.

Copper fins offer the best heat transfer, but aluminum fins provide the best overall value. Compared to aluminum fins, steel fins reduce heat transfer. Compared to aluminum and steel, stainless steel fins reduce heat transfer significantly. Fins may be of aluminum, copper, steel, or stainless steel, depending on contaminants, operating conditions and economic considerations.

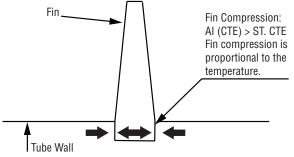
Relative Heat Transfer Capacities of Identical Coils Using Different Tube Materials				
Tube Material	Relative HT Capacity			
Copper	1.00			
Aluminum	1.00			
Steel	.98			
Stainless Steel	.95			

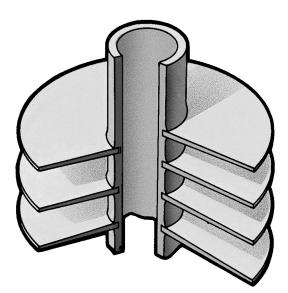
The selection of fin materials should be based upon several considerations:

- The heat transfer characteristic desired
- · The compatibility of the material with the air stream
- The amount and type of particulate matter in the air stream
- The frequency and aggressiveness of coil cleaning

The table below illustrates the heat transfer effectiveness of various fin materials with Armstrong coils. Note that these relative heat transfer capacities are for a specific set of conditions. The factors will vary with different conditions.

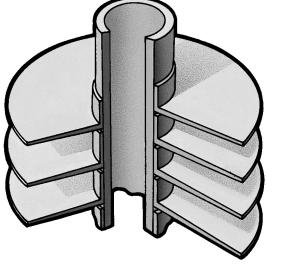
The fin/tube combinations available are listed on page 349.

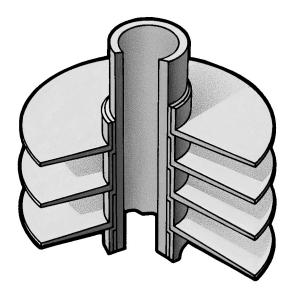

Relative Heat Transfer Capacities of Armstrong Coils With Tubes and Fins of Various Materials*						
Tube Material	Fin Material	Relative HT Capacity				
Steel	Copper Keyfin	1.05				
Steel	Aluminum Keyfin	1.00				
Stainless Steel	Aluminum Keyfin	.94				
Steel	Steel L Fin	.92				
Stainless Steel	Stainless Steel L Fin	.58				


*At 800 ft/min velocity, 7 fins/inch and 300°F steam temperature. Will vary at other conditions.

Keyfin

The keyfin is the standard design for Armstrong's most popular coils. Keyfin coils are manufactured by forming a helical groove in the tube surface, winding the fin into the groove and peening the displaced metal from the groove against the fin. This means a tight fit between the fin and the tube, providing for efficient operation over wide temperature ranges. Keyfin is the superior design for dissimilar fin and tube materials.





Heating and Cooling Coils

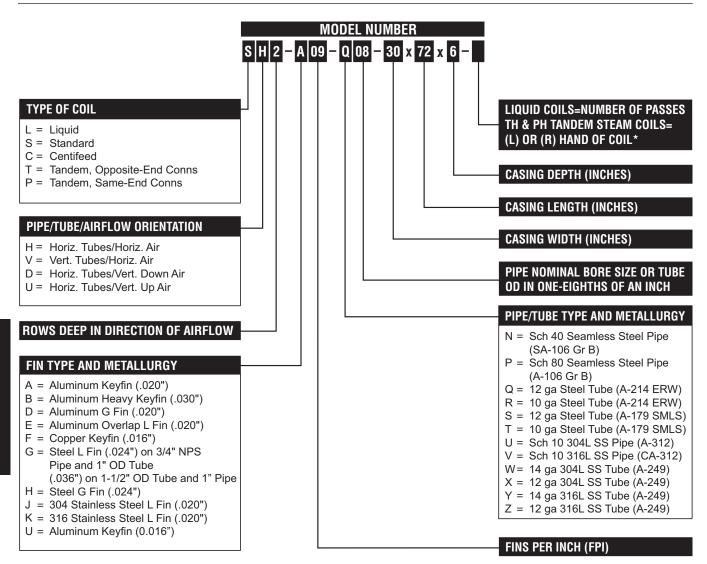
L Fin

The L fin has a "foot" at its base and is tension wound on knurled tube material. The L-shaped base provides a large contact area between the tube and the fin, ensuring effective, long-lasting heat transfer. The L fin is recommended when tubes and fins are of the same material.

Overlap L Fin

The overlap L fin is simply an L fin with an extended base. Each fin overlaps the foot of the previous fin, completely covering the tube surface. The overlap technique makes it possible to create a completely aluminumized coil for applications where exposed steel would be vulnerable to corrosion.

Why Settle for What's "Available" When You Can Specify Exactly What You Need?


Armstrong manufactures heavy-duty industrial coils in a wide range of sizes and materials to meet virtually any application demand. Dimensionally duplicated to fit your

exact requirements, Armstrong coils are what you need. Whether it's off the shelf or off the wall. Other materials will be considered upon request.

Construction Features					
		Tubes/Pipes			
Carbon Steel Tubes	Standard	12 ga A-214 ERW			
	Optional	10 ga A-214 ERW			
		12 ga A-179 seamless			
		10 ga A-179 seamless			
Carbon Steel Pipes	Optional	Sch 80 seamless; A-106 Gr 'B'			
Stainless Steel Tubes	Standard	14 ga (1" OD) 12 ga (1-1/2" OD) A-249 type 304L			
	Optional	14 ga (1" OD) 12 ga (1-1/2" OD) A-249 type 316L			
		Fins			
Steel	Standard	0.024" thick on 3/4" NPS pipes			
		0.024" thick on 1" OD tubes			
		0.036" thick on 1-1/2" OD tubes & 1" NPS & larger pipe			
Aluminum	Standard	0.020" thick on all tube sizes			
		0.016" thick on 1" OD			
	Optional	0.030" heavy keyfin 1" & 1-1/2" OD steel and stainless steel tube			
Stainless Steel		0.020" thick type 304 & 316 on all sizes			
Copper		0.016" thick on all sizes			
	1	Connections			
Steel		Sch 80 (screwed), Sch 40 (flanged)			
Stainless Steel		Sch 40 (screwed), Sch 10 (flanged)			
		Headers			
All coils have headers of the sar	me material as tubing	g and are of welded construction.			
	-	Casing			
Galvanized Steel	Standard	Minimum 12 ga galvanized for depth 7-1/2" and over			
		Minimum 14 ga galvanized for depth under 7-1/2"			
Stainless Steel	Optional	14 ga type 304 & 316 for all depths			
Aluminum	Optional	12 ga for all depths			
Other gauge material available o	on request. All casing	ps have drilled flanges for duct mounting unless specified otherwise.			
		Design Pressure			
Standard design pressure for steel coils is 300 psig @ 650°F, stainless steel coils 300 psig @ 500°F. Hot oil coil: 250 psig @ 750°F. Higher pressure and/or temperature construction is available on request. -20°F MDMT, lower MDMT available on request.					
		Testing			
All coils are tested hydrostatical	lly to at least 1.3 time	es the working pressure with a standard testing pressure at 450 psig on steel & stainless steel steam coils.			
		Options			
Steel tube with steel fin coils can be supplied hot dip galvanized. Steel/steel and steel/aluminum coils can be supplied with baked phenolic or epoxy coatings. Coils are available with ASME Section VIII, Division I, "U" stamps or CRN approval.					

Model Number Selection Series 6000 Coils

SPECIFY:

Number, Size and Type of Connections

Also call out non-standard items such as:

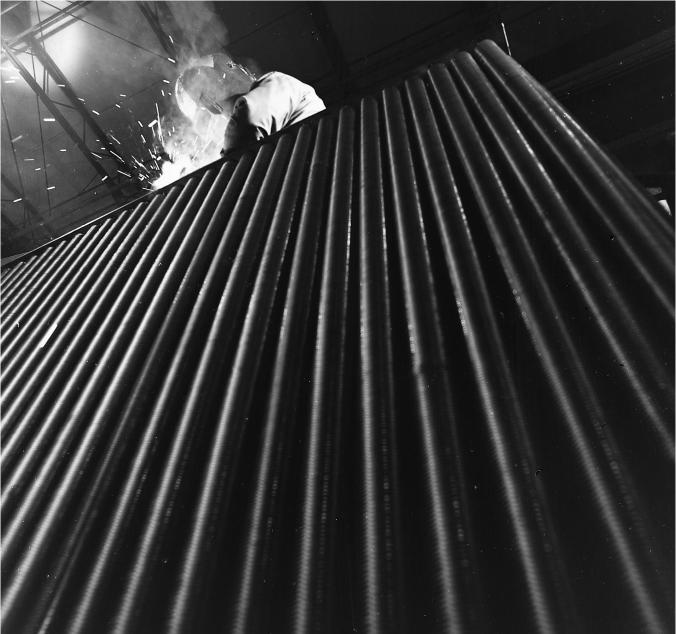
- Header Inside or Outside of Casing
- Special Casing Flange Width and Drilling
- · Airtight Casing
- Mounting Plate (removable type)
- · Coatings, etc.
- Number of Inlets
- Connection Location
- · Fluid Circuiting (for Liquid Coil)

*Hand of coil is determined by the position of either the condensate connection or the leaving liquid connection when facing the coil with the airflow to your back.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Heating and Cooling Coils

Steam Coils



For air heating coils, steam is the preferred medium for heat transfer throughout much of industry. It affords advantages over liquids because it is easy and inexpensive to move from the boiler to the point of use and because it gives up so much energy at a constant temperature when it condenses. Process control is easily and quickly accomplished with essentially no lag time as is experienced with liquids.

The selection of coil construction and materials is a multi-step process that must take a number of factors into consideration. Armstrong's line of heavy-duty steam coils is designed and manufactured to provide the long life and efficient heat transfer that pays dividends over a long period of time.

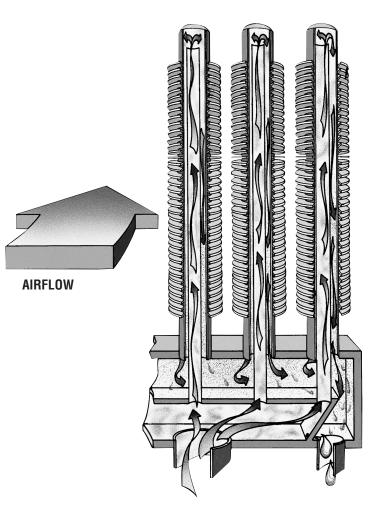
Selection of Steam Coil Circuitry

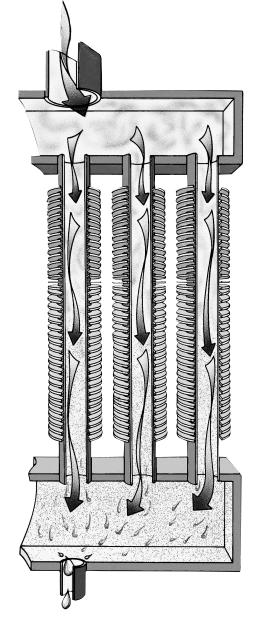
The following pages show the four types of coil circuits offered by Armstrong and discuss the application parameters of each. The return bend type circuit is not covered because Armstrong feels that one of the four listed circuits is a better choice for most applications.

Armstrong can build coils to a wide variety of material and performance specifications and dimensionally duplicate replacement coils to fit your exact requirements.

Standard Coils (Type S)

This type of coil is used for most applications where entering air temperatures are above 35°F and steam is at constant pressure. It is used extensively in high-temperature process applications and for "reheat" in HVAC systems. It is not, however, recommended where even outlet air temperatures are required immediately after the coil, such as in multi-zone heating systems, or where a modulating steam control valve is used to control temperature.


Centifeed Coils (Type C)


The single-row centifeed coil can be used where air is below freezing and/or modulating control is used. Recommended where:

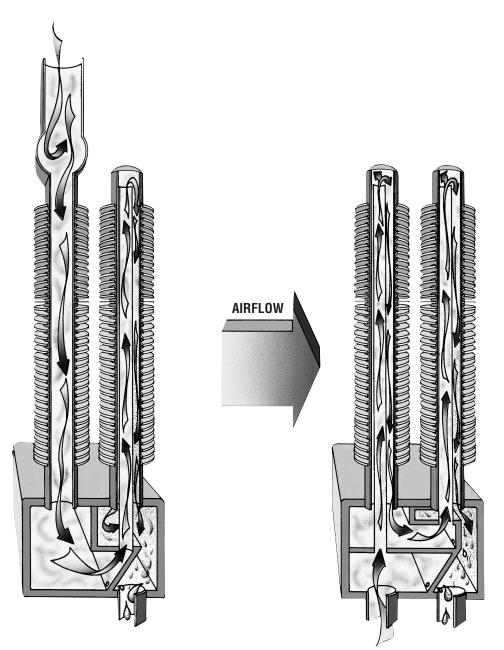
- A single row delivers the required performance
- **B** A modulating steam control valve is used
- E Even outlet air temperatures are required over the whole coil face
- **D** Stainless steel tubes are used

Two-row centifeed coils are available where (B) and (C) are required, but tandem type coils are a better choice with freezing air temperatures.

A centifeed coil is one plain tube—called the inner steam distribution tube—inserted inside an outer finned tube. The center tube is fed with steam, which travels up this distribution tube and is then discharged into the outer tube. It then travels back between the outside wall of the distribution tube and the inside wall of the finned tube to the condensate header. The inner tube acts as a steam tracer to keep the finned tube warm along its total length.

Type S coils are available with opposite-end connections only.

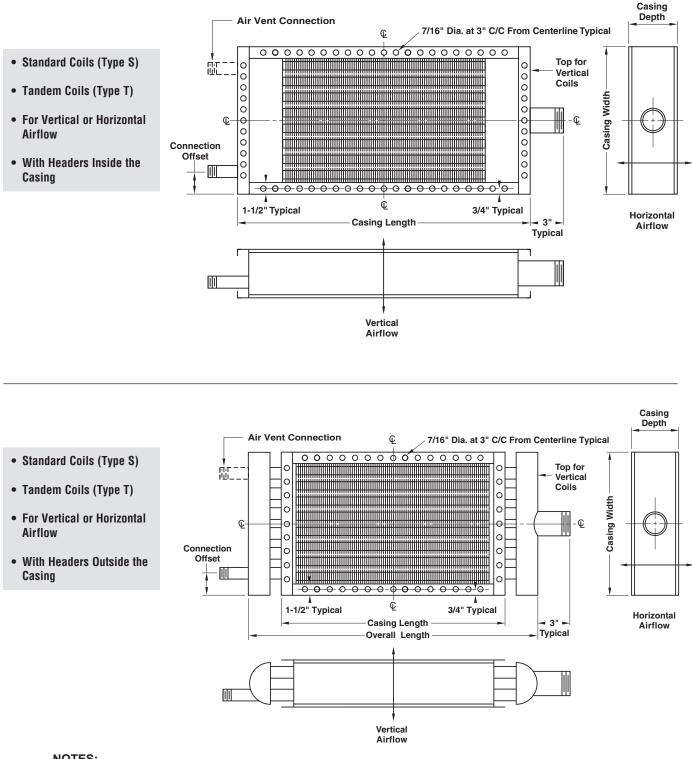
Type C coils are available with same-end connections only.



Tandem Coils (Types T and P)

Freezing applications requiring more than one row to achieve the desired final air temperature demand this type of coil.

The coil is designed so that the total amount of steam to be condensed by the whole coil is fed into the first row in the direction of airflow. This purges non-condensable gases and droplets of condensate from that part of the coil exposed to the coldest air. Channeling the steam from the header to the other rows in series has the same purging effect. This design ensures that air passing over the last row is at least 35°F. The coldest part of the coil will always have steam in sufficient quantity to overcome unequal distribution and "backfeeding" due to differing steam loads and pressure drops in adjacent tubes. This eliminates freezing problems caused by condensate holdup.

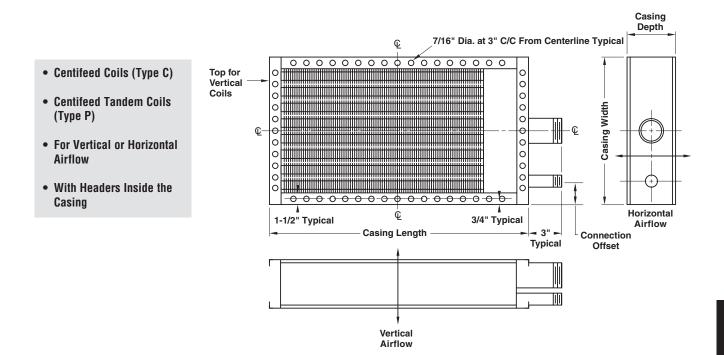

The "series" feed characteristic of the tandem coil, as opposed to the "parallel" feed of the two-row centifeed coil, makes it the ideal choice for multi-row coils in freezing applications. If you want a stainless steel tube tandem, specify a P type.

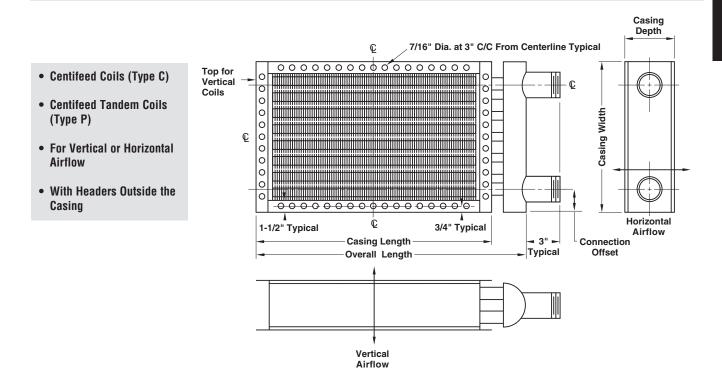
Type T coils have opposite-end connections.

Type P units have same-end connections.

NOTES:

Always specify airflow directions and tube orientation when ordering coils. Specify all dimensions for replacement coils, especially those varying from typicals above. If coils are to be Tandem type, specify coil hand by facing the coil with airflow at your back and pointing to the condensate connection.

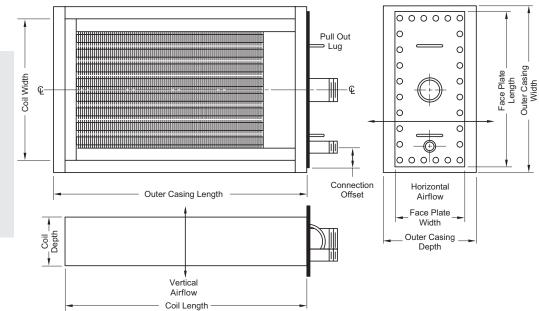

Minimum tandem casing depth is 7-1/2", contact factory for details.


Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

354

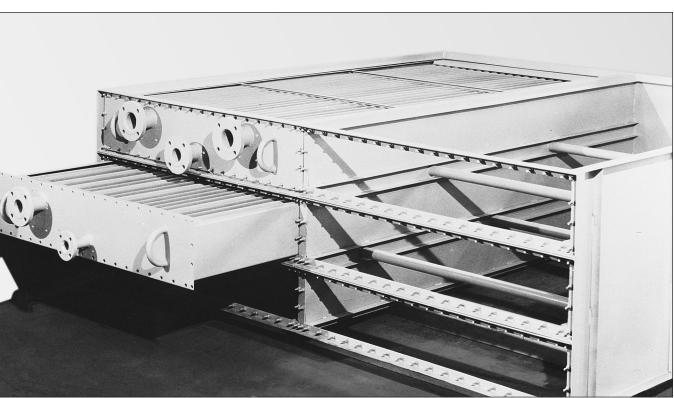
Steam Coil Typical Arrangements

NOTES:


Always specify airflow directions and tube orientation when ordering coils. Specify all dimensions for replacement coils, especially those varying from typicals above. If coils are to be Tandem type, specify coil hand by facing the coil with airflow at your back and pointing to the condensate connection.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

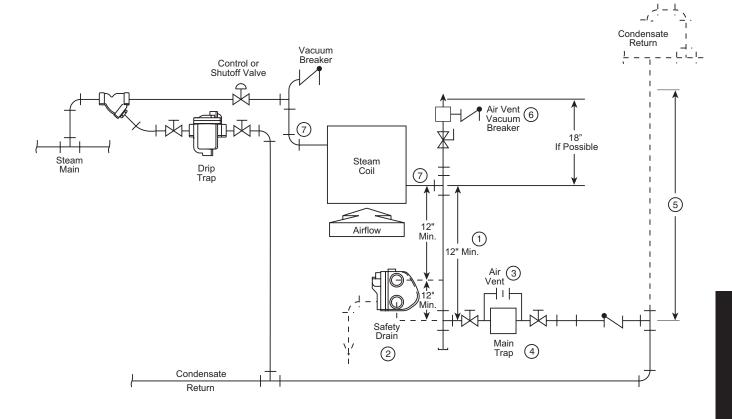
355



- Removable Coils
- Centifeed Coils (Type C)
- Centifeed Tandem Coils (Type P)
- For Vertical or Horizontal Airflow
- With Headers Inside the Casing

NOTES: Always specify airflow directions and tube orientation when ordering coils. Specify all dimensions for replacement coils, especially those varying from typicals above. If coils are to be Tandem type, specify coil hand by facing the coil with airflow at your back and pointing to the condensate connection.

Removable coils can be designed for removal from either connection end or end opposite connections.


Removable coils with outer casing (removable from connections end configuration shown above).

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Heating and Cooling Coils

Recommended Piping Practices for Steam Heating Coils

- 1.24" minimum if safety drain is used.
- 2. Safety drain is used if steam supply is modulated and the condensate system is pressurized or overhead. Armstrong's pumping traps or Posi-Pressure Control system provides additional protection or may substitute for the safety drain, especially if condensate conservation is desired.
- 3. Air venting must be provided on all steam coils except those using low-pressure Posi-Pressure Control systems. The air vent may either be an orifice bleed or a thermostatically operated element, with the orifice bleed being the preferred choice. The air vent or orifice bleed should be piped so that it cannot be valved out independently of the trap.
- 4. The main trap may be either an inverted bucket or a float & thermostatic type depending upon the service conditions. See the chart below for recommendations. Inverted bucket type steam trap required with Posi-Pressure Control system.
- 5. Overhead condensate return system.
- 6. Required only on a modulated system.
- 7. Provide a flexible connection or swing joint at the coil inlet and outlet connections to isolate the coil from vibration, piping stresses and differential expansion within the coil.

NOTE: See Bulletin AH-825 for detailed operation and maintenance procedures. Recommended practice valid for all steam coils (Duralite, Series 6000 and Duramix.)

Armstrong Steam Trap Selection Guide						
Equipment	Selections	Constant	Pressure	Modulated Pressure		
		0 - 30 psig	Above 30 psig	0 - 30 psig	Above 30 psig	
Unit Heaters	1st Choice 2nd Choice	IBLV F&T	IBLV F&T	F&T IBLV	F&T IBLV	
Air Handlers	1st Choice 2nd Choice	IBLV F&T	IBLV F&T	F&T IBLV	F&T IBLV	
		0 - 250 psig	Above 250 psig	0 - 30 psig	Above 30 psig	
Process Coils	1st Choice 2nd Choice	IBLV F&T	IBLV IBLV	F&T IBLV	F&T IBLV	
Duramix	1st Choice	IBLV	IBLV	Not Reco	mmended	

Armstrong Steam Trap Selection Guide

Armstrong Steam Coil Sizing Not for Retrofit

Date:		Representative:			
Salesperson:		Application:			
Customer:		Customer Location:			
Performance Requirements					
Air Flow Quantity	□SCFM		□lb/hr (check one)		

•			· · · · ·		
Altitude	_ feet above sea le	vel			
Humidity Ratio	_ lb. moisture/lb. c	lry air (proces	ss applications only)		
Design Entering Temperature _	•F				
Design Leaving Temperature	°F				
Steam Pressure at the coil(s) _		□psig	□psia		
Steam Pressure	Modulated	Constant			
Maximum Air Pressure Drop in wg					
Special Requirements Not Covered Above					

System and Coil Configuration Requirements

Air Flow Direction:	□Horizontal	□Vertical UP	□Vertical D	□Vertical DOWN (check one)		
Fan Location:	□Before Coils	□After Coils (ch	□After Coils (check one)			
Coil Tube Orientation:	□Horizontal	□Vertical	□Optional (check one)		
Type of Coil:	□Standard □(Centifeed 🛛 🗖 Tar	ndem 🗆 Centi	feed-Tandem	Optional	
Connection Type:	□MPT	□FPT	□Flanged			
Connection Location:	□Opposite End	□Same End	Optional			
Tube Material:	□Steel	□304L Stainless	□316L Stair	nless (chek one	e)	
Fin Material:	□0.020" Aluminu	n Keyfin 🛛 🗆	0.030" Aluminu	ım Keyfin		
	□0.016" Copper k	Keyfin 🗆	Steel/L-Fin	□Stainless	Steel/L-Fin	
Coils to be:	Duct Mounted	Removable wi	th Outer Case	□Core Only	(check one)	
Special Requirements Not Covered Above						

Steam Coil Sizing

Replacement for Existing Coils

Date:	Representative: Application: Customer Location:			
Salesperson:				
Customer:				
Performance Requirements				
Air Flow Quantity	□ACFM □Ib/hr (check one)			
Altitude feet above sea	level			
Humidity Ratio Ib. moisture/Ib.	dry air (process applications only)			
Design Entering Temperature °F				
Design Leaving Temperature °F				
Steam Pressure at the coil(s)	_ 🗆 psig 🛛 psia			
Steam Pressure DModulated	□Constant			
Maximum Air Pressure Drop in wg				
Special Requirements Not Covered Above				

System and Coil Configuration (Existing Installation)

Air Flow Direction:	□Horizontal	□Vertical UP	□Vertical DOWN (check one)				
Fan Location:	Before Coils	After Coils (check one)					
Coil Tube Orientation:	□Horizontal	□Vertical	□Optional (check one)				
Type of Coil:	□Standard □Ce	entifeed 🛛 🗖 Tande	m □Centifeed-Tandem □Optional				
Connection Type:	□MPT □FPT	□Flanged Inlet:	inches Outlet: inches				
Connection Location:	□Opposite End	□Same End	□ Optional				
Tube Material:							
Fin Material:	; Fin Thickness:	in; Fins/in	(count spaces)				
Fin Type:	□Plate	□Spiral Wound	□Extruded □Welded				
Number of Rows of Tube	es in Each Coil:	□One □Two	□Three □Other				
Number of Coils of Parallel; Number of Coils in Deep in Airstream							
Coils to be:	Duct Mounted	Removable with (Duter Case Core Only(check one)				
Special Requirements Not Covered Above							

Coil Requirements (Replacement Coil)

Type of Coil:		Centifeed	□Tande	m 🛛 Centif	eed-Tandem	Optional		
Connection Location:	Opposite End	□ Same E	□Same End		□ Optional			
Tube Material:	□Steel	□304L S	□304L Stainless		□316L Stainless (chek one)			
Fin Material:	□0.020" Alumir	num Keyfin	□0.	D.030" Aluminum Keyfin				
	□0.016" Copper Keyfin		⊐St	eel/L-Fin	□Stainless Steel/L-Fin			
On a side De antinene ante Mart Occurrent Alterna								

Special Requirements Not Covered Above_

Armstrong[®] Installation, Operation and Maintenance Instructions

In steam coils, successful operation and a long, trouble-free service life depend on:

- The manner of installation, including the design of coil mounting and piping—with particular emphasis on trapping and air venting.
- 2. Operating conditions that are within design parameters.
- 3. The method of operation.
- 4. The thoroughness and frequency of cleaning required.

Following these simple guidelines will help you achieve maximum coil performance.

Receipt and Storage

- 1. Upon receipt, inspect coils and notify carrier immediately of an damage sustained in transit.
- If coils are not installed immediately, store under cover in a heated area free of potential damage from personnel and/or equipment.

Installation

- 1. **Support coils and piping individually** to prevent undue strains on the steam and condensate connections. Use swing joints or flexible connections for freedom of movement.
- Steam and condensate pipes should be the same size as coil connections. Maintain connection size from the coil back to the steam main and from the coil to the steam trap takeoff.
- 3. **Install a drip trap** prior to the coils (and before a control valve if there is one) to prevent the introduction of condensate.
- 4. Install strainers with blowdown valves before all control valves and traps.
- To avoid hunting and maintain control, use only modified linear or equal percentage (vee-port) valves when a modulating control valve regulates the steam supply. Consult Armstrong for proper applications.

6. Never oversize control valves. Bigger is NOT better.

- 7. **Install a vacuum breaker** in the steam piping prior to the coil to prevent retention of condensate during shutdown. Also install a vacuum breaker on the downstream side of the coil when steam pressure is to be modulated. If you use check valves as vacuum breakers, they should be 15-degree swing checks.
- Provide venting of non-condensable gases individually on each coil to ensure maximum heat transfer and minimum internal corrosion. In order of effectiveness, venting can be with a fixed orifice bleed, independent thermostatic vent or by using a float and thermostatic steam trap.
- Trap all coils individually. Locate trap as close to coil as possible. Otherwise, inadequate drainage may damage the coil and/or interfere with effective heat transfer.
- 10. Use only traps such as the inverted bucket or float and thermostatic which drain continuously. When steam to the coils is modulated, a float and thermostatic trap is preferred. See the previous page for selection guidelines.

- 11. **Install a dirt pocket** prior to the steam trap. You may also install a gate valve at the bottom of the dirt pocket to facilitate drainage during shutdown periods.
- 12. Use the same size trap on all coils when they are in parallel across the duct opening. Coils mounted in series (one behind the other in the direction of the airflow) typically have lower condensing rates at the downstream end of the system. Size traps to handle the maximum calculated load for individual coils. Avoid oversizing. Consult your Armstrong Representative if you need assistance.
- 13. Modulating control valves are best used with gravity flow vented condensate return systems. If the condensate return system is overhead or pressurized, the use of pumps, Armstrong pumping traps or the Armstrong Posi-Pressure Coil Controller System is highly recommended. If this is not possible a safety drain as illustrated on page 357 should be installed.
- Install filters at the coil inlet if possible. Simple filter systems permit easy cleaning or replacement and ensure efficient operation.
- 15. Refer to the previous page for an illustration of piping practices for steam heating coils.
- 16. Provide uniform air velocity and uniform air temperature at the face of the coil. This is very important for good coil performance.

Operation

Once coils are installed properly, their performance and service life depend on a few simple guidelines for maintenance and operation.

- 1. To prevent plugging of tubes, clean the piping system and blow down all strainers prior to initial startup.
- 2. On startup, feed steam to the coils slowly to avoid thermal shock loadings.
- 3. Make sure the steam has been on for a minimum of 15 minutes prior to starting fans or opening dampers.
- 4. Make sure operating pressures are kept within design limits.
- 5. During initial startup, tighten all bolted connections once the system stabilizes at operating temperature.
- To provide maximum freeze protection, maintain a minimum steam pressure of 5 psig to coils exposed to air temperature below 40°F (5°C). If this is impossible, consult your Armstrong Representative.
- 7. Drain during shutdown to prevent internal corrosion.

Maintenance

- If filters are installed, clean regularly to maintain adequate airflow across the coils and to keep fan loadings at design.
- If filters are not used, inspect and clean coils periodically. Clogged filters and plugged coils have the same result.

Liquid Coils

Although steam may be the preferred heating medium for coils, liquids such as water, glycol solutions and high temperature heat transfer fluids are coming into wide use. Some of the reasons for the popularity of water and glycol systems are:

- Heat recovery systems are becoming more popular, and hot water or glycol solutions are ideal for that duty
- Hot water may be readily available from such sources as condensate systems or other processes, and it makes sense to use the available heat from those sources
- Users have a preference for liquids over steam

The use of high temperature heat transfer fluids has a number of practical advantages over water and steam when process air has to be heated to high temperatures. These fluids can operate in the 500°F to 750°F range at or near atmospheric pressure as opposed to steam, which would have to be over 1,500 psig in order to achieve a saturation temperature of 600°F.

Systems capable of operating at high pressures are expensive to construct and maintain. Corrosion caused by steam and water and the need for water treatment to minimize scale formation result in high maintenance costs. The absence of any need for supervisory staff to be on constant duty is a further advantage of the high temperature heat transfer fluid system.

To meet the needs of industry for heavy duty liquid coils, Armstrong has introduced a line of standardized sizes in seven widths from 16-3/4" to 57-3/4" in 21 lengths from 24" to 144". These are available with fin pitches from 5 to 11 FPI and in 2 or 3 rows. Many circuiting options are available.

As with all Armstrong coils, liquid coils are built to withstand the rigors of tough industrial applications in contrast to the commercial grade coils frequently misapplied in industrial environments.

In addition to the standardized line, custom coils in sizes to fit existing installations and in materials to fit particular applications are also available.

Materials of C	onstruction
Tubes	1" OD 12 ga (.109" wall thickness) A-214 ERW carbon steel tubes (seamless tubes optional), 10 ga tube also available.
Fins	.020" or .030" thick aluminum keyfin (imbedded).
Headers	Schedule 40 steel or fabricated.
Connections	Water and glycol solutions: • Schedule 80 steel screwed MPT (flanges optional) — same end High temperature heat transfer fluids: • Seamless Schedule 40 steel with 300 lb raised face weld neck flanges—same end
Assembly	All wetted parts are welded into a monometallic structure, affording the greatest strength and corrosion resistance.
Design	250 psig at 750°F. Hydrostatically standard testing pressure at 450 psig.
Casing	Minimum 14 ga galvanized steel primed after manufacture.
Coatings	Special coatings such as baked phenolic or epoxy powder are available as options. These coatings are suitable for temperatures up to 400°F.

Armstrong[®] Liquid Coil Sizing Not for Retrofit

ate:		Representative:
alesperson:		Application:
ustomer:		Customer Location:
Performance Requirements		
Air Flow Quantity		M 🛛 ACFM 🖓 Ib/hr (check one)
Altitude	_ feet abov	e sea level
Humidity Ratio	_ Ib. moist	re/lb. dry air (process applications only)
Design Entering Temperature		°F
Design Leaving Temperature		°F
Liquid Type		
Entering Liquid Temperature		°F
Leaving Liquid Temperature _		°F (or liquid flow rate gpm)
Liquid Characteristics at Avera	ge Liquid T	emperature:
Specific Gravity:		
Specific Heat:		
Viscocity:	□ср	□lb/ft-hr (check one)
Thermal Conductivity		
Special Requirements Not Cov	ered Above	

System and Coil Configuration Requirements

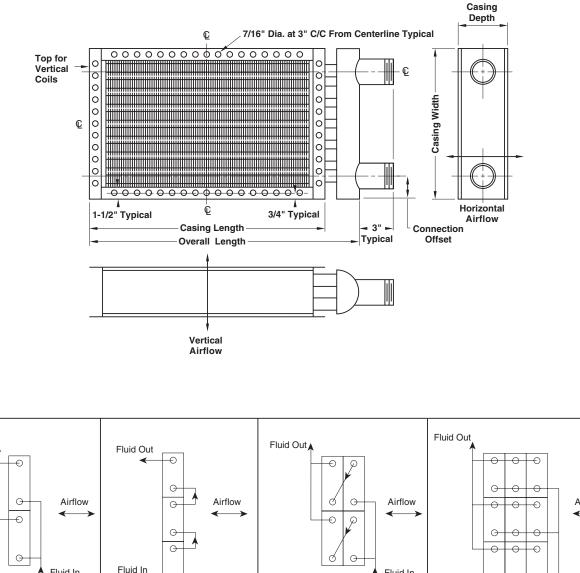
Air Flow Direction:	□Horizontal	□Vertical UP	□Vertical D0	WN (check one)
Fan Location:	□Before Coils	□After Coils (che	eck one)	
Coil Tube Orientation:	□Horizontal	□Vertical	□Optional (c	heck one)
Tube Material:	□Steel	□304L Stainless	□316L Stain	less (chek one)
Fin Material:	□0.020" Aluminur	m Keyfin 🛛 🗖	0.030" Aluminui	m Keyfin
	□0.016" Copper k	Keyfin 🗆	Steel	□Stainless Steel
Coils to be:	Duct Mounted	Removable wit	h Outer Case (ch	leck one)
Special Requirements N	lot Covered Above			

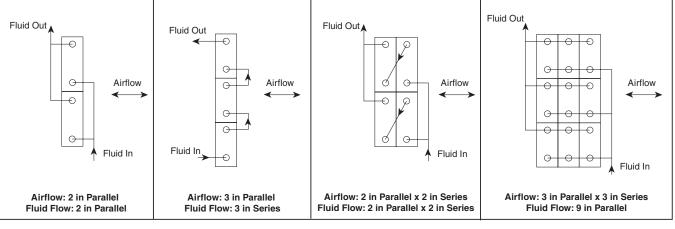
Liquid Coil Sizing

Replacement for Existing Coils

Date:			Represent	ative:
Salesperson:			Applicatio	n:
Customer:			Customer	Location:
Performance Requirements				
Air Flow Quantity		-M		□lb/hr (check one)
Altitude	_ feet abov	e sea lev	vel	
Humidity Ratio	_ lb. moistu	ure/lb. d	ry air (proce	ess applications only)
Design Entering Temperature		°F		
Design Leaving Temperature _		°F		
Liquid Type				
Entering Liquid Temperature _				
Leaving Liquid Temperature _			liquid flow	rate gpm)
Liquid Characteristics at Avera	ge Liquid T	emperat	ture:	
Specific Gravity:				
Specific Heat:				
Viscocity:	□ср	□lb	/ft-hr (checl	k one)
Thermal Conductivity				
Special Requirements Not Cov	ered Above			

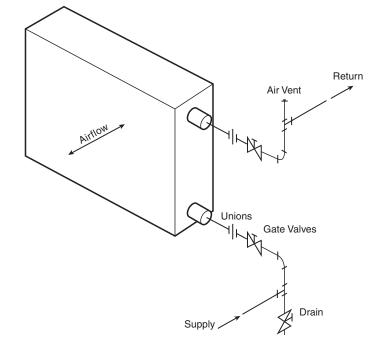
System and Coil Configuration (Existing Installation)


Air Flow Direction:		□Vertical UP	□Vertical DOWN (check one)	
Fan Location:	□Before Coils	□After Coils (cheo	ck one)	
Coil Tube Orientation:	□Horizontal	□Vertical	Optional (check one)	
Fluid Circuit:				
Connection Type:	□MPT □FPT	□Flanged Inle	et: inches Outlet: inches	
Connection Location:	□Same End	□Optional Co	nnection Size: inches	
Tube Material:				
Fin Material:	; Fin Thickness:	in; Fins/in	(count spaces)	
Fin Type:	□Plate	□Spiral Wound	□Extruded □Welded	
Number of Rows of Tub	es in Each Coil:	□One □Two	□Three □Other	
Number of Coils of Para	llel; Number	of Coils in Deep in	Airstream	
Coils to be:	Duct Mounted	□Removable with	Outer Case Core Only(check one)	
Special Requirements Not Covered Above				


Coil Requirements (Replacement Coil)

Type of Coil:	□Standard □	Centifeed	□Tandem	Centifeed-Tandem	Optional
Connection Location:	□Opposite End	□Same En	d 🗆	Optional	
Tube Material:	□Steel	□304L Sta	inless 🛛	316L Stainless (chek one	e)
Fin Material:	□0.020" Aluminu	m Keyfin	□0.030)" Aluminum Keyfin	
	□0.016" Copper ł	Keyfin	□Steel	/L-Fin DStainless	Steel/L-Fin
Special Requirements Not Covered Above					

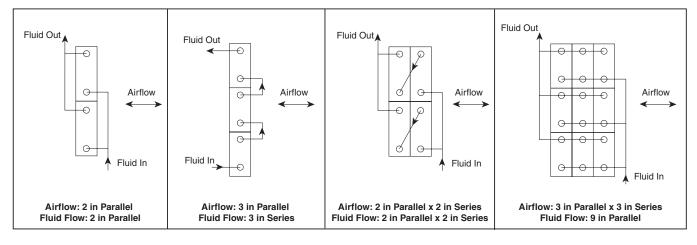
Heating and Cooling Coils


Casing Width: ___

Casing Length:_

Casing Depth: __

Note: Casing width is always measured along the header. Casing length is always measured along the tube length Hole sizes and placement are Armstrong standards. Please not variances.



- 1. Install coils level to assure complete drainage.
- 2. Supply water to the bottom connection and return through the top connection.
- 3. Carefully vent coils, either individually or through an air manifold.
- 4. Armstrong recommends that coil isolation valves be fitted to take out coils without disturbing the whole system.
- 5. Ensure that water supply to coils is as clean as possible to avoid potential blockage and excessive fouling. Settling tanks and strainers can be used for this purpose.

- 6. Do not support piping from the coils. Install adequate hangers and expansion joints to prevent undue stresses.
- 7. Armstrong recommends the use of low pressure air or flushing with ethylene glycol to prevent freeze damage when draining.
- 8. Do not use throttling controls in hot water heating service if there is a possibility of below-freezing air passing through the coil. Use an air by-pass system at full water flow rate for control.

NOTE: Keep finned tube surface clean and free of all foreign matter in order to maintain the design heat transfer and pressure drop ratings. Install filters upstream of the coils to keep actual coil maintenance to a minimum.

Examples of Multi-Coil Arrangements

Armstrong[®] How to Specify Armstrong Series 6000 Steam Coils

Heavy-duty construction/fabrication is why Armstrong Series 6000 coils last longer, saving maintenance and frequent replacement costs.

Think about it. Less expensive coils are also less durable and are commonly misapplied in heavy industrial service. As a result, they actually become more expensive when measured by down time, maintenance and replacement over a period of time. It's really a very simple fact: Higher initial costs are justified when they secure a lower life cycle cost.

The sample specifications below will help you in detailing coil construction for your heavy-duty application. These samples cover the most popular of the various material combinations. For assistance with other options, consult your Armstrong Representative.

Steel Tube/Aluminum Keyfins

- Tubes-minimum 12 ga carbon steel
- Fins—minimum 0.020" thick aluminum (imbedded type)
- · Headers-minimum Sch 40 carbon steel pipe
- Connections—minimum Sch 80 carbon steel pipe
- Casings—minimum 14 ga galvanized steel
- Tubes, headers and connections shall be welded together to form monometallic joints.

Steel Tube/Steel Fins

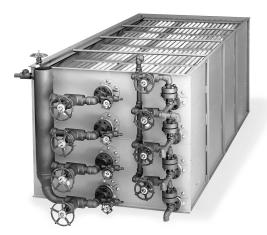
- Tubes—minimum 12 ga carbon steel
- Fins-minimum 0.024" thick carbon steel ("L" fin)
- · Headers-minimum Sch 40 carbon steel pipe
- · Connections-minimum Sch 80 carbon steel pipe
- Casings—minimum 14 ga galvanized steel
- Tubes, headers and connections shall be welded together to form monometallic joints.

Stainless Steel Tube/Aluminum Fins

- Tubes-minimum 14 ga 304L stainless steel
- Fins-minimum 0.020" thick aluminum (imbedded type)
- · Headers-minimum Sch 10 304L stainless steel pipe
- Connections—minimum Sch 40 304L stainless steel pipe Casings—minimum 14 ga galvanized steel
- Tubes, headers and connections shall be welded together to form monometallic joints.

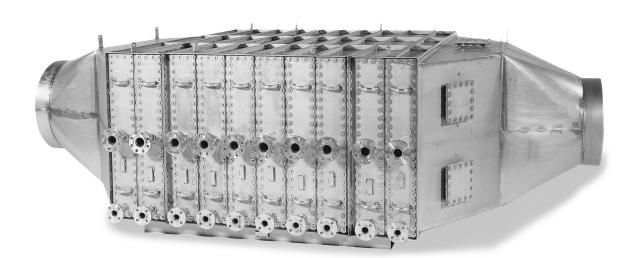
NOTE: 0.030" thick aluminum keyfin is an available option for imbedded type only.

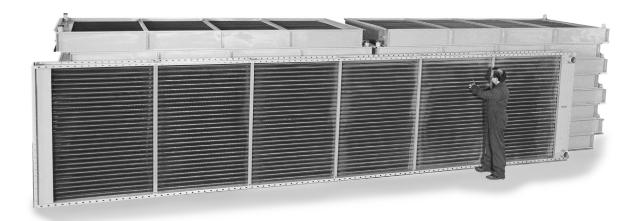
Typical Coil Applications


Armstrong can manufacture coils in any configuration necessary to meet your requirements.

- · Pulp dryer coils
- Veneer dryer coils
- Pocket ventilation coils
- Smokehouse coils
- Yankee hood drying coils
- Pasteurizer coils
- Air makeup coils for comfort heating
- Char coolers
- Carpet dryer coils
- Boiler air preheater coils
- Grain dryer coils
- Boiler feedwater runaround systems

- · Starch dryer coils
- Textile dryer coils
- Dry kiln coils
- · Paint spray booth coils
- · Drying ovens
- Steam condenser coils
- Unit heaters for comfort heating
- Door heaters
- Tank heating coils
- · Unit coolers and condensers
- · Fluid Bed Dryers
- · Direct Contact Fluid Bed Dryers


Coil Packages Engineered to Your Specifications


Air heaters using high pressure steam.

Blast air coolers and heaters.

Stainless steel boiler air preheaters used in the pulp and paper industry.

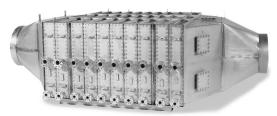
Air heaters using thermal oils.

Armstrong[®] System Solutions for Boiler Air Preheating

Quality Construction

"Designed to Perform & Built to Last"

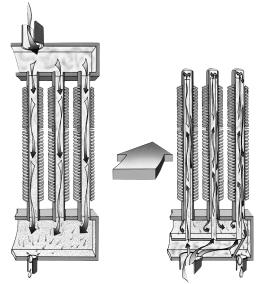
Armstrong Preheat Coils outlast thin-finned and thin-walled lightweights because of superior engineering and robust construction. Thicker tube walls and fins provide greater resistance to coil damage and wear from high pressures, temperatures and corrosive conditions.

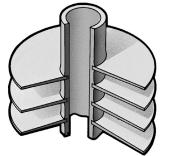

Armstrong's Typical Heavy Duty Air Heater Specifications:

- · Fins Keyfin Embedded, Spiral Wound Aluminum or Copper
- Fin Thickness Minimum 0.020" thickness or optional 0.030" Heavy Keyfin
- Tubes 1" OD x 12 Ga Carbon Steel or 14 Ga St.Stl. (1-1/2" OD Available)
- Inner Tubes 1/2" 7/8" OD Carbon or St. Steel (no perforations or holes)
- Headers Heavy Wall (Carbon Steel or St.Steel) Fabricated
- Tube/Header Joints All Welded Multi-Pass Full Penetration
- Tube Sheets NC Machined, and Chamfered Tube Holes -Heavy Gauge
- Mono-Metallic Construction on all wetted parts reducing potential for galvanic corrosion
- Coil Casings Min 14ga or 12 Ga Galvanized Steel or St. Steel
- Outer Casings Drawer Type Construction with Airtight Outer Casings for ease of coil removal or replacement
- Cleanout/Inspection/Access Spacer Sections Available on request
- Inlet/Outlet Transitions Per Specification
- Pre-Piped Options On Application
- Extended Warranties Available on Application
- Design and Construction in Accordance with ASME SECTION VIII Div. 1. (All Armstrong 6000 Series Coils are built to this standard whether or not ASME is required - unlike other manufacturers).
- U Stamp Available on request
- · Special Materials and Coatings available on request
- Manufacturing done in Armstrong factories, not subcontracted. Armstrong controls all QA/QC in-house.

Whether you need a standard replacement coil or custom-built unit, you'll get the same built-in quality.

During construction each section of the coil is checked for compliance with detailed, written QA/QC procedures available for your review. And, finally the complete coil is tested hydrostatically to ASME standards.


Armstrong offers total steam expertise and manufacturing capability that can help you identify and solve coil problems. In addition, Armstrong's steam system package approach is a blueprint for blending superior products, knowledge and judgment into plans for effective energy management and pinpointing Heat Rate improvements.


Full Systems with Transitions

Drawer Type Air Preheat Coils

Specialized Coil Designs

"KEYFIN" (embedded) Fin Tube

Solutions Through Experience.

For power and large industrial plants, producing electricity, generating steam, energy efficiency, air preheating and protection of important heat transfer equipment and systems, go hand in hand. Coordinating design and performance of various system components requires a review of the entire energy usage loop from turbine extraction, through air preheating, to condensate collection, return, and re-use of available flash energy and hot condensate.

Combustion and boiler air preheating is no longer just a simple need to heat air to prevent dew point issues on tubular or regenerative air pre-heater surfaces. The advent of SCR's, SNCR's, WET/DRY SCRUBBERS – FGD'S, BAGHOUSE UPGRADES, AND STACK GAS REHEATING, have positioned the steam or fluid coil air pre-heater as a key component to the overall combustion efficiency and equipment life extension planning.

For more than a century, Armstrong has been synonymous with steam system innovation and solutions. Armstrong understands efficient generation and effective use of steam throughout the power/utility, large industrial boiler operations, from Coal/Fossil fired, through Biomass, Hog Fuels, Black Liquor Recovery (B.L.R.B.) and Fluid Bed designs to packaged fire tube boiler requirements.

Combustion air preheating heat source options we work with include, extraction or auxiliary steam source, thermal oils, glycol or hot water (from d/a etc.).

Armstrong leads the industry in rugged, robust coil designs that extend life of equipment and reduce downtime and lost energy production hours. With reduced staffing in most facilities, you can relax and focus on your base operations and be assured that the systems we provide will deliver years of continuous, optimized performance.

ARMSTRONG IS ALSO THE ONLY GLOBAL MANUFACTURER WITH THE ABILITY TO SUPPLY KEY SYSTEM COMPONENTS INCLUDING STEAM SUPPLY CONTROL VALVES, HEAVY DUTY COILS, CONDENSATE TRAPPING, VENTING COLLECTION AND RETURN SYSTEMS FROM THE SAME CORPORATE SOURCING! THIS MAKES ARMSTRONG YOUR ONE-STOP SOLUTION SOURCE!

Armstrong partners are air preheat and coil system specialists.

Combine our combustion air preheat coil-building know-how with the expertise of a decades-old steam specialist and what do you get? Preheat coils specifically designed for the rigors of power plant applications.

Armstrong: The power to improve on every energy front.

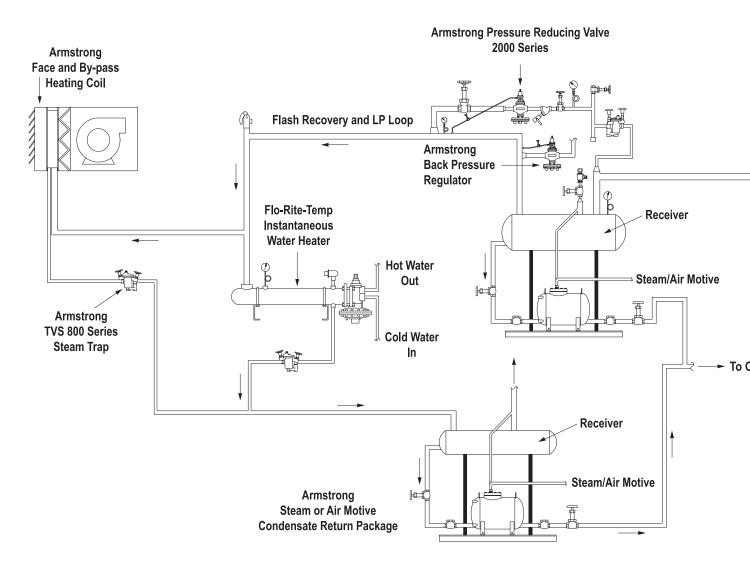
Why add Armstrong to your energy team? Our applications expertise in the key areas of combustion air preheating and efficient use of extraction steam and flash recovery is well documented. Our steam trapping and condensate recovery/ handling knowledge in both saturated and superheated steam applications extends over 100 years. Even your HVAC, plant heating/cooling and hot water requirements are within the scope of the products and services from Armstrong.

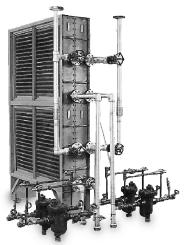
Armstrong is a problem solver.

At Armstrong, we consider the entire system. We don't simply duplicate the coils within it. Flexibility—in material, engineering and construction—is the key to Armstrong's problem-solving. We carefully match coil characteristics to specific applications, on a case-by-case basis.

You can depend on Armstrong for custom engineering and quality construction.

Coil problem: Armstrong solution. We can manufacture coils in a range of sizes and in a variety of metals and alloys, including steel, stainless steel, copper, copper-alloy and other metals. A blend of custom engineering and quality construction results in an extended life cycle for your combustion air or process system coil/service package with a focus on heat rate improvement for power generation applications.

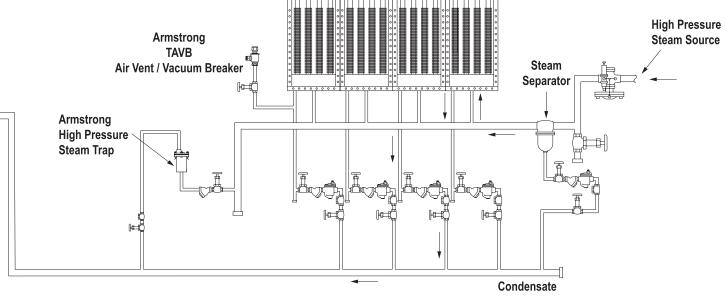

Armstrong has a complete range of service options.


Specialists from Armstrong can visit your location for walkthroughs and follow up with comprehensive system assessments. While there may be more than one course of action for you, we will recommend and—if you choose implement the one(s) that will deliver the greatest benefit.

Although the cost of fossil fuels fluctuates, Armstrong can help you use it more efficiently. Our experience and total coil air preheating system capability can be the beginning of your transition from necessary parasitic load preheating to maximizing your combustion air preheating system's effect on improving overall system efficiency and reliability.

CONTACT US TODAY!

Pre-piped/Package Air Preheater Coil System


Heavy Duty Steam and Fluid Unit Heaters & Door Heaters

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Heating and Cooling Coils

System Solutions for Boiler Air Preheating

Condenser Hot Well or Deaerator

Flo-Rite-Temp Instantaneous Water Heater

Condensate Recovery Systems Heavy Duty Face & Bypass Steam Coil Pre-Heating Systems

If you are NOT following Best Practices, you may not be getting the Most out of your Air Preheating System!

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

371

Heating and Cooling Coils

Armstrong Armstrong Duralite[™] Plate Fin Coils

Armstrong is a full-line coil supplier with application knowledge and experience you'll find nowhere else in the industry. For nearly half a century, our heavy-duty industrial coils have been serving the process needs of heavy industry. Building on that tradition of quality and dependability, our plate fin coils meet the diverse needs of the HVAC and light industrial markets.

Casings

14 or 16 Ga galvanized steel, depending on size and material Options: aluminum or stainless steel

Vent connections Top and bottom on all liquid coils, top of condensate header on Standard steam coils

Connections

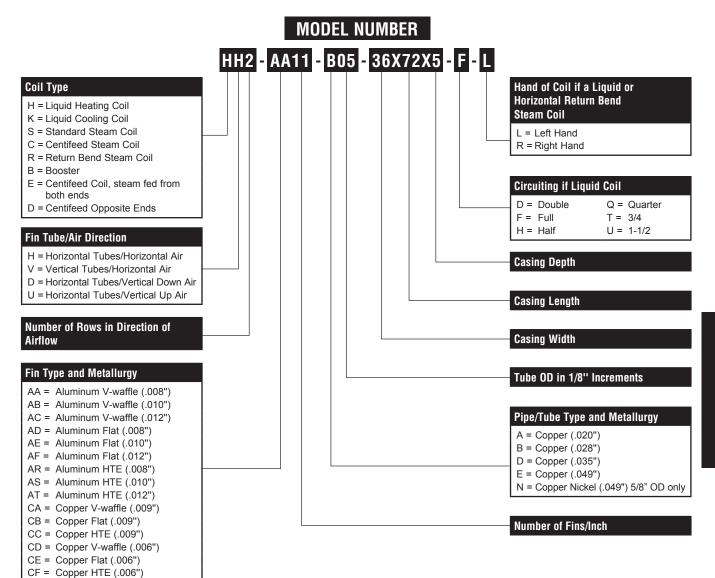
Brass MPT for cooling applications, steel for heating applications Options: brass or steel flanged

Fins

5/8" OD x .028" thick copper Options: .020" or .035" or .049" copper

V-waffle, HTE or flat: 6 to 14 FPI Aluminum: .008", .010", .012" thick Copper: .006", .009" thick

1" OD x .032" thick copper on One-Row steam coils Option: .049" thick copper


5/8" OD x 0.049" copper nickel

Headers

Minimum .060" to .134" thick copper or copper nickel, depending on coil size

Plate Fin Coil Model Numbers

How to Identify the Circuiting of a Return Bend Coil

- 1. Identify the inlet header and count the number of tubes fed from it.
- 2. Count the number of tubes in the face of the coil.
- Divide the number of tubes fed from the header by the number of tubes in the face.
- 4. The result is the identification of the coil's circuit.

How to Identify the Hand of a Return Bend Coil

- 1. Face the coil with the airflow at your back (or imagine this).
- 2. Point to the outlet connection (it will be at the top of a liquid coil and should be closest to you). On a return bend steam coil, it will be the condensate return connection and should be farthest from you. If the reverse of the above exists, the coil may be installed incorrectly.
- 3. The connection on your right indicates a right-hand coil.
- 4. The connection on your left indicates a left-hand coil.

Coil-A-ware[™] Sizing Program

*Windows is a registered trademark of Microsoft.

Armstrong coils, both heavy duty and plate fin, are available on a Windows*-based computer program that is extremely user friendly. To obtain a copy through your Armstrong Representative, visit our Web site at **armstrong**international.com and supply the requested information. Your local representative will personally deliver it to you. Updates will be available and downloadable from the Web site.

North America • Latin America • India • Europe / Middle East / Africa • China • Pacific Rim armstronginternational.com

Armstrong[®] How To Order Armstrong Duralite[™] Plate Fin Steam Coils

Armstrong Duralite[™] Plate Fin Steam Coils are available in Centifeed (Steam Distributing Tube Type), Standard (Opposite End Connections) and Two-Row Return Bend Construction.

Centifeed, Standard and Return Bend coils are made of 5/8" OD tubes as a standard.

One-Row coils are available optionally with 1" OD tubes.

Depending upon steam flow, long Centifeed coils may require steam to be fed from both ends to eliminate cold tube ends and subsequent freezing potential.

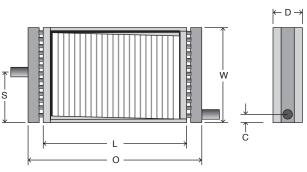
To ensure that a replacement coil will fit in the same location, and that it will perform the same as the coil it replaces, the dimensions and other data requested below must be obtained prior to sizing and pricing.

Dimensions

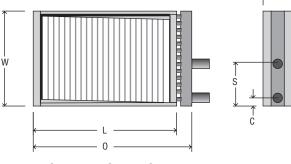
W	L	D	0	S*	C*

*Not required if Armstrong Standard Dimensions are acceptable.

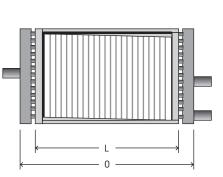
Performance Information

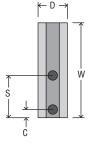

Airflow rate:

Heating and Cooling Coils

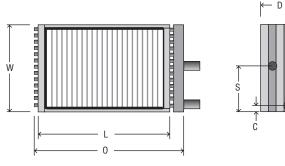

/ 111000 1410.				
🗖 Fan CFM	SCFM	🗖 lb/	hr	
Fan location:	🗖 before o	coil(s)	🗖 after coil(s	s)
Steam pressur	re:			psig
Entering air ter	mperature:			° F
Leaving air ter	nperature:			° F
Altitude:				ft. above MSL

Coil Information


Coil type (spec	ify):			
Fin type:	🗖 flat	V-waffle	🗖 HTE	
Fin material:				
Fin thickness:				in.
Fins per inch:				
Tube material:				
Tube OD:				in.
Tube wall:				in.
Steam connect	ion size:			in.
Condensate co	nnection	size:		in.
Casing materia	l:			
Number of tube	es in coil	face:		
Number of tube	es fed by	each header:		
Number of row	s of tube	s in direction		
of airflow:				
Hand of coil if	Return B	end: 🗖 left 🕻	⊐ right	
Special feature	s:			



Standard Steam Coils


Centifeed Steam Coils

- D

Centifeed Steam Coils Fed From Both Ends

Return Bend Steam Coils

How To Order Armstrong Duralite[™] Plate Fin Liquid Coils

- D -

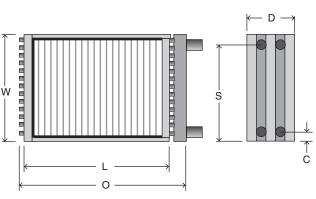
Armstrong Duralite[™] Plate Fin Heating Coils are available in Return Header design in one- or two-row configurations and Return Bend design in two or more rows. Liquid coils are made of 5/8¹¹ OD copper tube.

Cooling coils can be built from 2 to 12 rows and with double, full or 1/2 circuits. Custom circuits are also available.

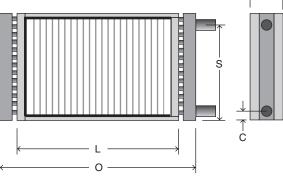
To ensure that a replacement coil will fit in the same location, and that it will perform the same as the coil it replaces, the dimensions and other data requested below must be obtained prior to sizing and pricing.

Dimensions

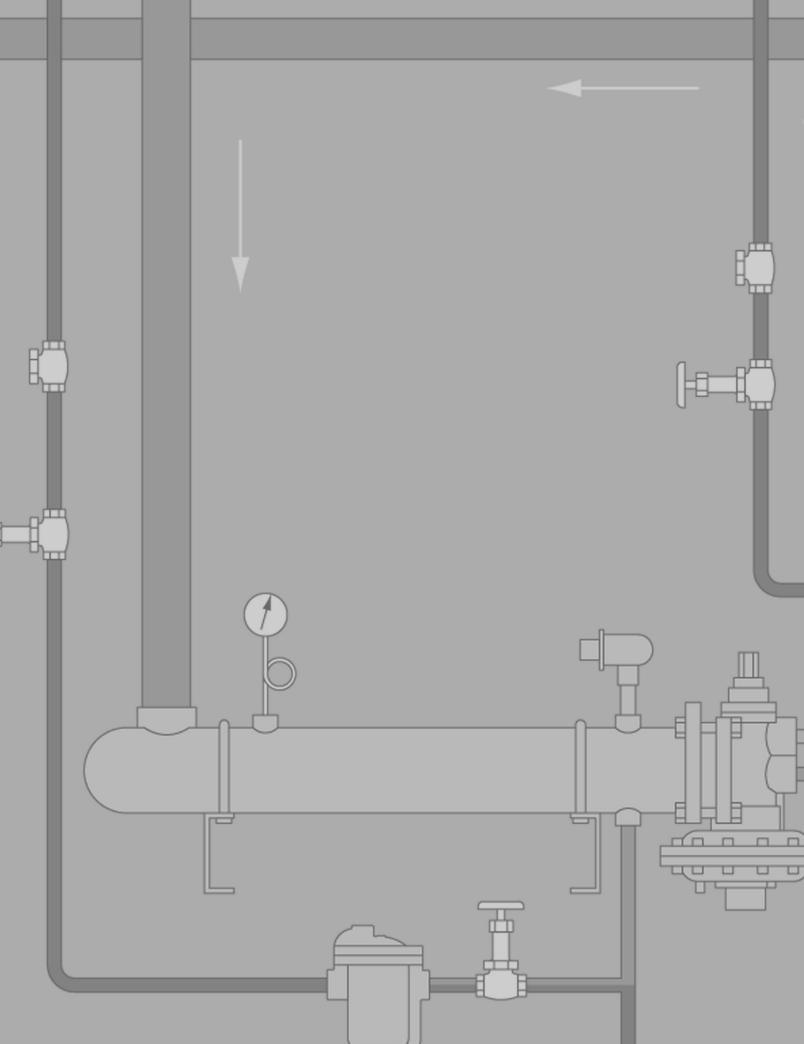
W	L	D	0	S*	C*


*Not required if Armstrong Standard Dimensions are acceptable.

Performance Information


Airflow rate:	
🗖 Fan CFM 🗖 SCFM 🗖 Ib/hr	
Fan location: before coil(s) after c	coil(s)
Entering air temperature:	° F
Wet bulb or RH (if cooling):	
Leaving air temperature:	° F
Heating or cooling medium:	
Entering liquid temperature:	° F
Leaving liquid temperature:	° F
or liquid flow rate:	GPM
Altitude:	ft. above MSL

Coil Information


Coil type (specify):	
Fin type: 🗖 flat 🗖 V-waffle 🗖 HTE	
Fin material:	
Fin thickness:	in.
Fins per inch:	
Tube material:	
Tube OD:	in.
Tube wall:	in.
Inlet connection size:	in.
Outlet connection size:	in.
Casing material:	
Number of tubes in coil face:	
Number of tubes fed by each header:	
Number of rows of tubes in direction	
of airflow:	
Hand of coil if Return Bend: 🗖 left 🗖	right
Special features:	-

Return Bend Heating & Cooling Coils

Return Header Heating Coils

Unit Heaters

Armstrong[®] Longer Life in the Harshest Environments

When it comes to long life under tough industrial conditions, Armstrong is all you need to know about unit heaters. Even in the most severe environments, where coil leaks and corrosion are costly problems, Armstrong coils maintain high efficiency and output.

Armstrong: Why and How

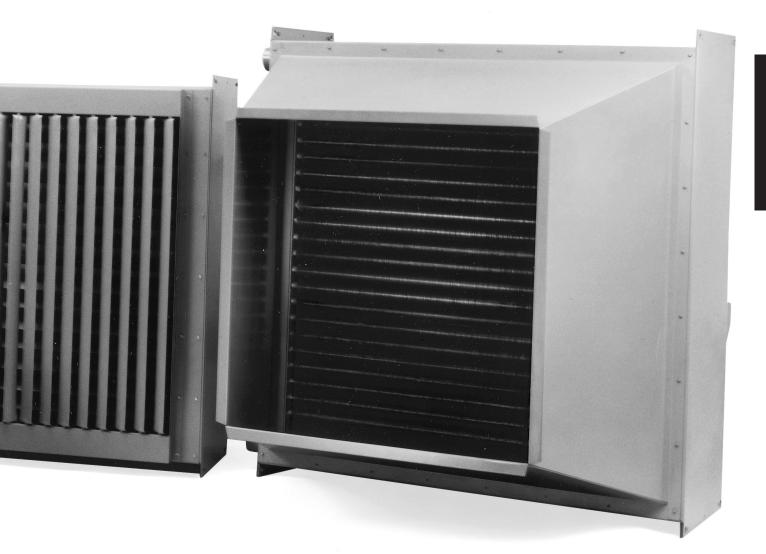
The ability to maintain heat transfer efficiency and resist corrosion—both internally and externally—is why Armstrong unit heaters are uniquely dependable. *How* we construct them is your assurance of lasting performance, even in severe operating environments.

Consider these measurable benefits at work in your facility:

- Heavy gauge enclosures: Fabricated from 14-gauge steel for protection and durability.
- **Corrosion-resistant heating cores:** Cores are fabricated in a full range of materials, including steel, stainless steel, copper and others. Special coatings may be applied to increase resistance to external corrosion. Cores feature allwelded construction for durability and ease of repair. Cores can be steam or liquid compatible and can be used for steam, hot water or glycol heating mediums.

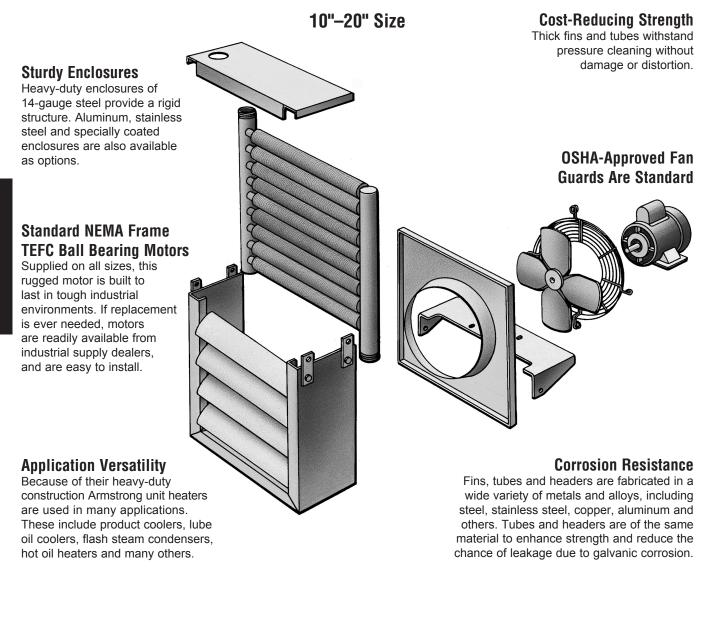
- Standard NEMA frame TEFC ball bearing motors: Supplied on all sizes, these heavy-duty motors are totally enclosed to lock out dirt for smooth performance. Quick access to the motor permits easy replacement.
- Thick fins and tubes: Constructed of high-strength, corrosion-resistant materials. Fins are available in a wide variety of thicknesses and pitches to withstand high pressure cleaning without damage or distortion.
- **Customizing to your needs:** Fans range in size from 10" to 48", and the wide selection of component materials means long, trouble-free service life.

Lightweight coils don't stand a chance in harsh environments. Armstrong coils survive because they're built as tough as your meanest application.

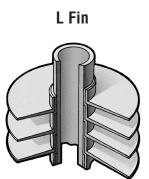


Your Steam Specialist

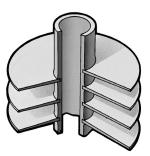
The first step toward ensuring trouble-free operation is proper unit selection. Your Armstrong Representative will help you select the right unit heater or door heater for any given application.

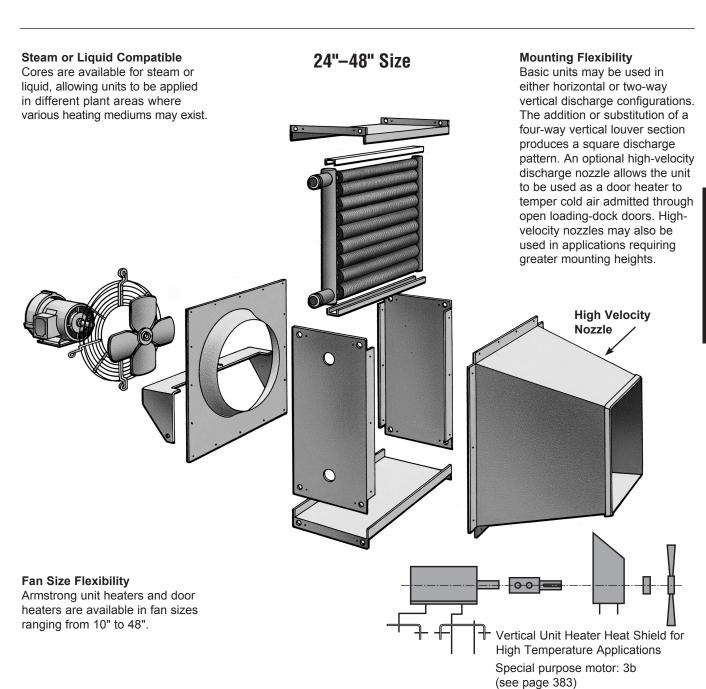

Our expertise as a manufacturer of unit heaters and door heaters is backed by over 70 years' experience in steam trapping, venting and condensate removal. To you, that means a superior product and an Armstrong Representative who understands how to make it work in your steam system.

If you're losing heat transfer due to deteriorating coils, contact your Armstrong Representative for a complete application analysis. You'll receive top-quality, reliable products from experts who know how to maximize your steam system efficiency.


Armstrong[®] Compare the Benefits You Can't See

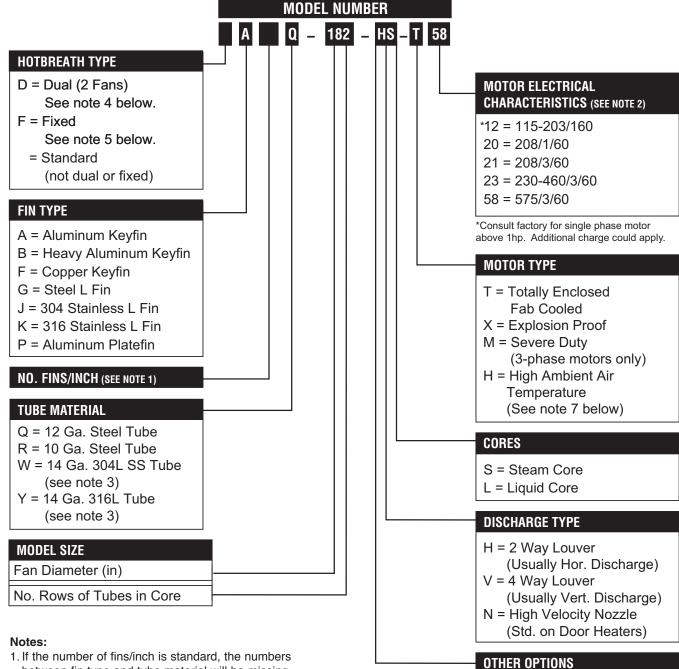
Many of the best reasons to insist on Armstrong unit heaters and door heaters are ones you never even see. Components like motors, bearings, tubes, enclosures and fins are built heavy-duty to ensure lasting performance. Armstrong's options for fin material, pitch, height and type, for example, help explain why our heating cores last longer and perform with greater efficiency. These factors all have a bearing on heat transfer. Knowing how to balance these and other factors is the key to a cost-effective solution. That knowledge is perhaps the most important of Armstrong's many hidden benefits.




The L fin has a foot at its base and is tension wound on knurled tube material. The L-shaped base provides a large contact area between the tube and the fin, ensuring effective, long-lasting heat transfer. The L fin is recommended when tubes and fins are of the same material.

The keyfin is manufactured by forming a helical groove in the tube surface, winding the fin into the groove and peening the displaced metal from the groove against the fin. This means a tight fit between the fin and the tube. The keyfin is the superior design for dissimilar tube and fin material.

Keyfin



Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Heating and Cooling Coils

- between fin type and tube material will be missing.
- 2. If dual or triple voltage motors are supplied, the voltage shown on the model number will be the lowest specified. It is the responsibility of the installer to ensure that the motor is wired correctly in accordance with the motor manufacturer's instructions to preclude damage.
- 3. May be substituted with Sch. 10 SS pipe.
- 4. Add prefix 'D' for dual units (2 fans on wider core). For standard unit with one fan, the Hotbreath type will be missing.
- 5. F Models includes larger motors, cleanout lip, ports for sensors.

HS = Heat Shield

(See note 6 below)

- 6. Required for vertical airflow or if heating medium temperature is above 300°F.
- 7. Required for ambient air above 104°F and only available with 3-phases motors.

Material Specifications

Unit Heater (Core Material Sp	ecifications							
1" 01) Tubes		Fins			Hea	ders	Conne	ections
Material	Min. Wall Thickness	Material	Туре	FPI	Minimum Thickness	Material	Minimum Thickness	Material	Minimum Thickness
Standard Ma	terials							-	<u> </u>
Steel	.109"	Steel	L-Foot	11	.024"	Steel	.145"	Steel	.133"
Steel	.109"	Aluminum	Keyfin	11	.020"	Steel	.145"	Steel	.133"
Steel	.109"	Aluminum	Keyfin	13	.016"	Steel	.145"	Steel	.133"
Special Orde	r Materials								<u> </u>
Steel	.109"	Copper	Keyfin	12	.016"	Steel	.145"	Steel	.133"
Stainless	.083"	Steel	L-Foot	11	.024"	Stainless	.109"	Stainless	.109"
Stainless	.083"	Stainless	L-Foot	10	.020"	Stainless	.109"	Stainless	.109"
Stainless	.083"	Aluminum	Keyfin	11	.020"	Stainless	.109"	Stainless	.109"
Stainless	.083"	Copper	Keyfin	11	.016"	Stainless	.109"	Stainless	.109"

NOTE: Stainless tubes available in either 304L or 316L.

Options:

Thicker tube walls.

Design Pressures and Testing Specifications

Core design pressure is 350 psig @ saturated steam temperature. (650°F for carbon steel and 500°F for stainless steel) Standard testing pressure at 525 psig. Higher pressure ratings are available upon request.

Enclosures

Enclosures, louvers and high-velocity nozzles are fabricated from 14 ga galvanized steel, finished in gray enamel. Available material options include stainless steel or aluminum. Epoxy coatings and other protective finishes are available.

Motor Specifications

Standard Motors

Construction:

TEFC, NEMA frame, rigid mount, continuous duty, NEMA B design, Class B insulation, 1.0 service factor, sealed ball bearings and steel frame.

Electrical Characteristics:

Single Phase (standard through 3/4 HP—optional extra cost 1-1/2 HP) 115, 208 & 230 volts. Three Phase (all sizes)—208, 230, 460 & 575 volts.

Special Purpose Motors

- 1. Explosion-proof motors are available in all horsepowers and voltages. They are suitable for Class I Group D and Class II Groups F & G service.
- Environmentally Protected. Known as "Mill & Chemical," "Severe" and "Hostile" duty motors.
 - a. Three phase 1/2 & 3/4 HP. Available with 1.15 service factor, Class F insulation, steel frame, cast iron end bells and conduit box, phosphatized or stainless steel shaft, shaft flingers and stainless steel nameplate.

Fans

Fans are of stamped aluminum with steel hubs and spiders on unit sizes 30" and smaller. Cast aluminum fans are furnished on unit sizes 36" and larger.

Fan guards are OSHA-approved and constructed of bright zinc plated steel wire.

b. Three phase integral HP. Available with 1.15 service factor, Class F insulation, cast iron frame, end bells, fan cover and conduit box, stainless steel shaft, shaft flingers and stainless steel nameplate, epoxy coated. (Explosion proof motor S.F. = 1.0).

3. High Temperature Applications

- a. For horizontal discharge applications where high ambient temperatures are encountered (typically 140°F–150°F, 165°F maximum), motor HP or insulation class must be increased. Consult factory.
- b. For vertical units with on/off fan operation:

Heating Medium Temperature 300°F–375°F Class F Insulation & Heat Shield

For explosion proof motor, consult factory. 375°F & Over Class H Insulation & Heat Shield

4. Washdown duty motors also available.

Special coatings such as powder coat epoxy, baked phenolic or hot dip galvanizing.

Armstrong[®] Selecting Unit Heaters

A multi-step process is required to select the proper size, type and number of unit heaters to adequately heat a particular building. The process consists of the following steps:

- 1. Estimate the building heat loss.
- 2. Preliminarily select the number and type(s) of heaters to properly cover the area to be heated.
- 3. Select specific models and calculate the actual performance of equipment selected using actual heating medium conditions and inlet air temperatures.
- 4. Calculate actual throws, spreads and mounting heights and check to see that they will allow for complete coverage of the area to be heated.
- 5. If necessary, adjust selection and repeat steps 2 through 4.

Estimating Heat Loss

The ASHRAE Handbook of Fundamentals should be consulted to determine heat losses, taking into account specific building features. However, for an approximation of the heat loss from a typical modern industrial building, the following formula may be used.

With heated area size and outside design temperatures given:

A. Calculate the volume of the building in cubic feet:

Volume (cu ft) = floor length (ft) x floor width (ft) x average ceiling height (ft)

Typical Arrangements

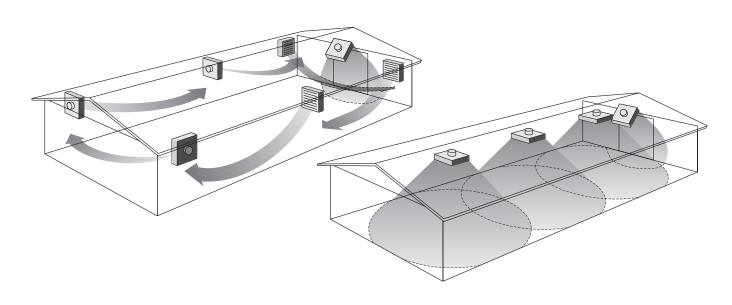
B. Calculate the area of walls and roofs that are exposed to outside temperature:

Exposed area (EA) = wall length (ft) x average ceiling height (ft) + floor area (sq ft)

C. Total heat load (MBH) =

$$\left(\frac{V}{25} + \frac{EA}{4}\right) \times \frac{\Delta T}{1000}$$

Where


- V = Building Volume (cu-ft)
- EA = Exposed Wall & Roof Area (ft²)

 ΔT = Inside Design Temperature (F) – Outside Design Temperature (F)

Selection of Number, Type(s) and Location of Unit Heaters

With the total heat loss calculated, the next step is to determine the number, type(s) and location of unit heaters. First, look at the layout of the building. From that, determine the general arrangement of the unit heaters. Some typical layouts are shown below, but any given arrangement should be tailored to the particular building. Some general rules to consider follow:

 Horizontal unit heaters are used as a means to heat outside walls and should be directed to discharge toward or along walls to provide a wiping effect. Horizontal discharge units are generally sufficient to adequately heat most buildings except those with very large central floor areas or very high ceilings.

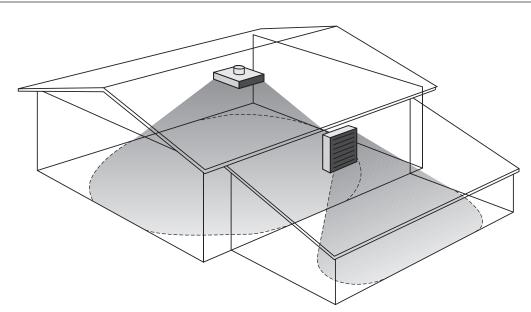
Horizontal unit heaters provide a sweeping effect over outside walls and are sufficient to heat most buildings except those with large central floor areas.

Four-way vertical discharge units are used to heat large central areas and buildings with high ceilings or buildings with large heat loss through the ceiling.

2. Vertical unit heaters are used when a direct downward discharge to heat large central areas is needed. They may also be used if the mounting heights and throws allow for wiping of the walls with their discharge air. The discharge may be arranged for two-way airflow or fourway airflow with the addition or substitution of a four-way discharge section. A rectangular building might only need two-way discharge, whereas a square building would be better covered with a four-way arrangement.

Vertical units are also used in buildings with high ceilings or where roof heat losses are exceptionally high. Hot air from the roof area is drawn into the units and directed down to floor level, minimizing temperature gradients and reducing fuel consumption.

If fitted with a high-velocity discharge nozzle, units can be used at higher than normal mounting heights.


- 3. Door heaters simply use a high-velocity discharge nozzle to increase the air velocity to reach those areas that are hard to heat. These heaters can provide blankets of warm air to heat large open-loading doorways or busy entryways. They are also ideal for heating wide open plant areas. If door heater fans are activated only when doors are open, their Btu output should not be considered as part of the heat loss makeup. See page 386 for door heater selection guidelines.
- 4. Units should be directed toward the areas of greatest heat loss. Outside doorways and exposed windows require more careful consideration.
- 5. Unit heater airstreams should be minimally obstructed to allow for greatest heat distribution.

- 6. Unit heaters should be located to blow into open spaces such as aisles and along exterior walls rather than directly at personnel.
- 7. The mounting heights and throws specified on page 392 and corrected for outlet air temperature should be followed. Improper mounting height distance will result in poor heat distribution and reduced comfort.

Once the general layout has been determined, you can begin selecting the type of model required. First, select any door heaters that may be required. Then, select any vertical unit heaters. If the vertical unit heaters are to be directed toward center floor areas and used in conjunction with horizontal units, calculate the percentage of the total area it is intended to cover and divide that by 2. That will give you the percentage of the total heat that is required from the vertical units.

Lastly, select the horizontal units. The remaining heat load to be provided is divided by the number of units desired. Here your choice may be between a number of smaller units or fewer larger units. Notice that as the units increase in size and heating capacity their throw also increases. Generally, fewer larger units will result in the most economical installation as long as full coverage is provided.

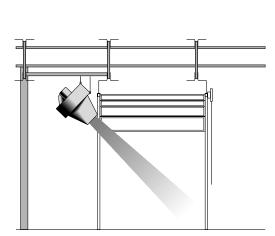
After completing this preliminary selection process, you can calculate the actual throws, spreads and mounting heights to ensure the area will be adequately heated. If you find that the required coverage cannot be met with your initial selections, recalculate coverage by adjusting unit size or number of units.

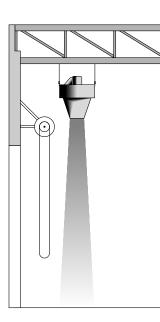
High-velocity vertical unit heaters and door heaters are used to reach hard-to-heat areas or to provide blankets of warm air to large open areas such as loading dock doors.

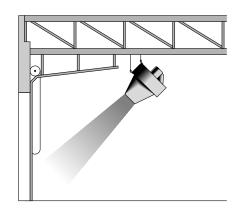
Door heaters are identical in design to unit heaters with the addition of a high-velocity nozzle. This nozzle helps direct airflow precisely to heat the door area required.

Door Heater Model Size	Selection Chart													
Door Size		Outside Design Temperature												
Width x Height (ft)	-40°F	-30°F	-20°F	-10°F	0°F	10°F	20°F	30°F						
6 x 8	30	24	24	20	18	18	16	14						
8 x 8	36	30	30	24	20	20	18	16						
8 x 10	42	36	30	30	24	20	20	18						
10 x 12	48	48	42	36	30	30	24	20						
12 x 14	Two 42	Two 36	48	42	36	36	30	30						
14 x 16	Two 48	Two 42	Two 36	48	42	42	36	30						
16 x 18	Two 48	Two 48	Two 42	Two 36	48	48	42	36						
18 x 20	Three 48	Three 42	Two 48	Two 42	Two 42	48	48	42						
20 x 22	Three 48	Three 48	Three 42	Two 48	Two 42	Two 36	48	48						
22 x 24	Four 48	Four 48	Three 48	Three 42	Two 48	Two 42	Two 36	48						
24 x 26	Four 48	Four 48	Three 48	Three 48	Two 48	Two 42	Two 42	Two 36						

How to Use This Model Size Chart:


This chart gives the recommended size of door heaters. Select either a single- or double-row heating core from the appropriate performance chart (pages 386 to 392) to give a final air temperature within the 100°F to 130°F range.


• For roll-up or sliding doors, mount unit(s) to discharge vertically with the bottom of the discharge directly above the top of the door. For overhead doors, mount unit(s)


back into the building at a distance to give sufficient clearance from the door in the open position. Aim the discharge toward the bottom of the door.

- · For doors facing prevailing winds, select one size larger.
- If negative pressure exists in the building, consult factory. Additional capacity could be required.

Typical Door Heater Arrangements

Side-mounted 45° discharge for low ceiling applications.

Vertical discharge for roll-up or sliding doors. Front-mou

Front-mounted 45° discharge for overhead doors.

FEITUIT			-			r Temperatu		Steel	Tube / Stee	el Fin			
	Medel	-	ommon D		Steel 1	Tube / Alumi 11 FPI	num Fin		ss Tube / Si		Stainle	ess Tube / Stain 10 FPI	nless Fin
	Model Size	MO	tor	CFM			_		11 FPI			1 1	
	0.20	HP	RPM	2	MBH ③	Leaving Air (°F)	Cond. (Ib/hr)	MBH 3	Leaving Air (°F)	Cond. (Ib/hr)	MBH 3	Leaving Air (°F)	Cond. (Ib/hr)
s	101	1/3	1,725	810	36	102	38	29	93	30	17	80	18
del	121	1/3	1,725	1,350	53	97	55	42	89	44	25	77	26
Standard Models	141	1/3	1,725	2,590	80	89	83	64	83	66	37	73	39
lard	161	1/2	1,725	3,330	102	88	105	87	84	90	51	74	53
lanc	181	3/4	1,725	4,420	128	87	133	109	83	113	64	73	66
ŝ	201	3/4	1,725	5,430	156	87	161	131	82	136	77	73	79
	241	1-1/2	1,125	7,020	205	87	212	179	84	185	105	74	108
	301	2	1,125	10,660	322	88	333	276	84	286	162	74	168
	361	2	1,125	13,440	406	88	420	351	84	363	206	74	213
	421	3	870	16,530	536	90	555	444	85	459	261	75	270
	481	3	870	22,110	692	89	716	593	85	614	349	75	361
S	102	1/3	1,725	700	55	133	57	45	119	47	28	98	29
lode	122	1/3	1,725	1,320	88	122	91	71	110	74	44	91	45
ē	142	1/3	1,725	1,980	122	117	126	100	107	103	61	88	63
atur	162	1/2	1,725	2,910	166	113	171	143	106	148	87	88	90
per	182	3/4	1,725	3,900	212	110	219	182	103	189	110	86	114
lem	202	3/4	1,725	4,560	253	111	262	217	104	224	131	87	136
Outlet Air Temperature Models	242	1-1/2	1,125	6,000	343	113	355	304	107	315	186	89	192
let /	302	2	1,125	9,400	548	114	567	477	107	494	291	89	301
Out	362	2	1,125	12,160	722	115	747	622	107	643	380	89	393
High (422	3	870	15,160	950	118	983	802	109	830	492	90	509
Ŧ	482	3	870	20,040	1,234	117	1,277	1,063	109	1,100	652	90	675

NOTES:

 \bigodot Steam pressure as supplied to unit heater. Valve and line losses must be subtracted from steam main pressure.

(2) Standard CFM measured at 70°F with density of .075 lb/cu ft.

③ Heat load in thousands of Btu/hr.

NOTE:

Leaving air temperature and MBH from table above must be corrected for steam pressures other than 2 psig and entering air temperatures other than 60°F.

Correction Factors Based on 2 psig $^{m O}$ Steam, 60°F Entering Air Steam ① Saturated Steam Temperature of Entering Air (°F) Pressure Steam Temp. Latent Heat -10 0 10 20 30 40 50 60 70 80 90 100 (°F) (Btu/lb) (psig) 0.71 1.16 1.08 1.00 0.93 0.85 0.78 219 966 2 5 1.64 1.55 1.46 1.37 1.29 1.21 1.13 1.05 0.97 0.90 0.83 0.76 227 960 10 0.98 239 953 1.55 1.38 1.29 1.21 1.06 0.91 0.84 1.73 1.64 1.46 1.13 15 1.80 1.71 1.61 1.53 1.44 1.34 1.28 1.19 1.12 1.04 0.97 0.90 250 945 259 939 20 1.86 1.77 1.68 1.58 1.50 1.42 1.33 1.25 1.17 1.10 1.02 0.95 274 929 30 1.68 1.60 1.51 1.43 1.35 1.97 1.87 1.78 1.27 1.19 1.12 1.04 40 1.68 1.51 1.43 1.35 286 920 2.06 1.96 1.86 1.77 1.60 1.27 1.19 1.12 50 2.13 2.04 1.94 1.85 1.76 1.67 1.58 1.50 1.42 1.34 1.26 1.19 298 912 60 2.20 2.09 2.00 1.90 1.81 1.73 1.64 1.56 1.47 1.39 1.31 1.24 307 906 70 2.26 2.16 2.06 1.96 1.87 1.78 1.70 1.61 1.53 1.45 1.29 316 898 1.37 75 2.28 2.18 2.09 1.99 1.90 1.81 1.72 1.64 1.55 1.47 1.40 1.32 320 895 80 2.31 2.21 2.11 2.02 1.93 1.84 1.75 1.66 1.58 1.50 1.42 1.34 324 891 90 2.36 2.26 2.16 2.06 1.97 1.88 1.79 1.71 1.62 1.54 1.46 1.38 331 886 100 2.41 2.31 2.20 2.11 2.02 1.93 1.84 1.75 1.66 1.58 1.50 1.42 338 880 125 2.51 2.41 2.31 2.21 2.11 2.02 1.93 1.68 353 1.84 1.76 1.59 1.51 868 150 2.60 2.50 2.40 2.30 2.20 2.11 2.02 1.93 1.84 1.76 1.67 1.59 366 857 200 2.75 2.55 2.45 2.35 2.25 2.16 2.07 1.98 1.89 1.81 388 837 2.65 1.72 2.57 250 2.87 2.77 2.67 2.46 2.36 2.27 2.18 2.09 2.01 1.92 1.81 408 820

shown

Table below lists the correction factors. To determine correction factors falling between those shown, use the next lowest steam pressure and the next highest air temperature

MBH (corrected) = MBH (above) x Correction Factor LAT (corrected) = EAT + (MBH [corrected] x 926/CFM)

Condensate Load = MBH (corrected) x 1,000/Latent Heat of Steam

Per	forma	nce Da	ata Wi	th 200°	F $^{ ext{0}}$ Wat	er, 60°	°F Enterin	ng Air Ter	nperature										
		Co	mmon	Data		Steel	Tube / Alu	minum Fir	1			el Tube / S ess Tube				Stainles	s Tube / S	tainless F	in
	Model	M	otor				11 FP	I			ətannı	11 FP					10 FP	I	
	Size	HP	RPM	CFM ②	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressure Drop (ft wg)	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressure Drop (ft wg)	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressure Drop (ft wg)
	102	1/3	1,725	700	10 20	45 39	119 112	8.9 3.9	2.01 .39	10 20	33 29	104 99	6.7 2.9	1.02 .20	10 20	25 22	93 89	5.0 2.2	.54 .10
	102	1/0		100	30	34	106	2.3	.13	30	25	93	1.7	.07	30	19	86	1.3	.04
	122	1/3		1.320	10 20	62 55	103 99	12.4 5.5	4.01 .79	10 20	52 46	96 92	10.4 4.6	1.87 .37	10 20	38 34	87 84	7.6 3.4	.95 .19
	122	1/5		1,320	30	49	94	3.2	.27	30	40	88	2.7	.13	30	30	81	2.0	.07
	140	1/0		1 000	10	90	102	18.0	1.95	10	76	96	15.2	.94	10	55	86	11.0	.46
	142	1/3		1,980	20 30	78 67	97 92	7.8 4.5	.37 .12	20 30	66 57	91 87	6.6 3.8	.18 .06	20 30	48 42	82 79	4.8 2.8	.09 .03
					10	119	98	23.9	2.77	10	97	91	19.3	1.24	10	70	82	14.0	.62
Standard Models	162	1/2		2,910	20 30	105 92	94 89	10.5 6.1	.54 .18	20 30	85 75	87 84	8.5 5.0	.24 .08	20 30	61 54	80 77	6.1 3.6	.12 .04
M No					10	156	97	31.2	3.89	10	132	91	26.5	1.77	10	94	82	18.9	.85
Idari	182	3/4		3,900	20 30	137	93 89	13.7	.75 .26	20 30	116	88	11.6	.34 .12	20 30	83	80	8.3 4.9	.17
Star					10	121 190	99	8.1 38.0	4.88	10	102 161	84 93	6.8 32.2	2.25	10	74	78 83	23.1	.06 1.08
	202	3/4		4,560	20	170	95	17.0	.97	20	144	89	14.4	.45	20	103	81	10.3	.22
			1,125		30 10	150 284	91 104	10.0 56.8	.34 8.39	30 10	127 237	86 97	8.4 47.4	.15 3.87	30 10	91 169	79 86	6.1 33.7	.08 1.82
	242	1-1/2	1,120	6,000	20	258	100	25.8	1.73	20	214	93	21.4	.79	20	153	84	15.3	.37
					30 15	232 437	96 103	15.5 58.2	.62 4.10	<u>30</u> 10	196 380	90 97	13.1 75.9	.29 6.36	30 10	137 267	81 86	9.2 53.4	.13 2.94
	302	2		9,400	20	437	103	41.6	2.79	20	345	97	34.5	1.31	20	207	84	24.5	.62
					30	381	98	25.4	1.04	30	315	91	21.0	.49	30	222	82	14.8	.23
	362	2		12,160	15 20	575 552	104 102	76.7 55.2	5.84 4.19	10 20	491 452	97 95	98.2 45.3	9.20 1.96	10 20	352 324	87 85	70.4 32.4	4.41 .94
	002	_	V	12,100	30	506	99	33.7	1.56	30	419	92	27.9	.74	30	297	83	19.8	.35
	422	3	870	15,160	10 20	748 675	106 101	149.7 67.5	3.05 .62	10 20	612 552	97 94	122.5 55.2	1.43 .29	10 20	452 406	88 85	90.4 40.6	.70 .14
	422	3		15,100	30	603	97	40.2	.02	30	490	94	32.6	.29	30	364	82	40.0	.14 .05
	100			00.040	10	989	106	197.8	4.36	10	820	98	164.1	1.97	10	547	88	119.5	.98
	482	3	♥	20,040	20 30	892 801	101 97	89.2 53.4	.89 .32	20 30	745 667	94 91	74.5 44.4	.41 .14	20 30	539 487	85 83	53.9 32.5	.20 .07
			1,725		10	28	92	5.6	3.80	10	21	84	4.2	2.09	10	16	78	3.1	.86
	101	1/3		810	20 30	25 22	88 85	2.5 1.5	.74 .26	20 30	19 17	82 79	1.9 1.1	.43 .15	20 30	14 12	76 74	1.4 .8	.17 .06
					10	41	88	8.2	6.20	10	32	82	6.3	3.54	10	23	76	4.6	1.4
	121	1/3		1,350	20	36	85	3.7	1.24	20	29	80	2.9	.73	20	20	74	2.0	.28
					30 10	32 60	82 81	2.2 12.0	.44 3.13	30 10	25 47	77	1.7 9.5	.25 1.85	30 10	18 33	73 72	1.2 6.6	.10 .68
	141	1/3		2,590	20	52	79	5.2	.58	20	41	75	4.1	.35	20	29	70	2.9	.13
					30 10	45 76	76 81	3.0 15.3	.20 4.15	30 10	36 63	73 78	2.4 12.7	.12 2.19	30 10	25 45	69 73	1.7 9.0	.04 .84
s	161	1/2		3,330	20	67	79	6.7	.80	20	57	76	5.7	.44	20	40	71	4.0	.16
Outlet Air Temperature Models					30 10	58	76	3.9 19.5	.27	30 10	49 81	74 77	3.3 16.1	.15	30 10	35 57	70 72	2.3	.06
E N	181	3/4		4,420	20	97 86	80 78	8.6	5.62 1.09	20	73	75	7.3	3.03 .61	20	57	72	11.4 5.0	1.15 .22
ratu					30	75	76	5.0	.37	30	64	74	4.3	.21	30	45	69	3.0	.08
mpe	201	3/4		5,430	10 20	119 106	80 78	23.8 10.6	7.14 1.40	10 20	98 88	77 75	19.6 8.8	3.85 .78	10 20	69 62	72 71	13.7 6.2	1.44 .29
ir Te	201	0,1	V	0,100	30	94	76	6.3	.49	30	79	74	5.3	.28	30	55	69	3.7	.10
et A	041	1 1/0	1,125	7,020	15 20	160 153	81	21.4	4.47 2.28	10	136 123	78	27.1 12.3	4.76 .97	10 20	95 86	73	19.0 8.6	2.16
Out	241	1-1/2		7,020	30	133	80 78	15.3 9.1	.80	20 30	123	76 75	7.4	.36	30	78	70	0.0 5.2	.45 .16
Low				10.000	15	249	82	33.2	6.66	10	208	78	41.7	7.22	10	149	73	29.7	3.41
	301	2		10,660	20 30	236 215	81 79	23.6 14.4	3.37 1.25	20 30	190 173	77 75	19.0 11.5	1.50 .55	20 30	137 124	72 71	13.7 8.3	.74 .27
					15	327	83	43.6	9.87	10	269	79	53.7	10.43	10	190	73	38.0	4.88
	361	2	↓	13,440	20 30	312	82 80	31.2	5.07	20 30	247	77	24.7	2.20 .82	20 30	177	72	17.7	1.06
			870		30 10	285 425	80 84	19.0 85.0	1.87 3.74	30 10	226 337	76 79	15.1 67.5	1.66	10	161 234	71 73	10.7 46.8	.39 .74
	421	3	1	16,530	20	380	81	38.0	.75	20	300	77	30.0	.33	20	211	72	21.1	.15
					30 10	336 559	79 83	22.4 111.8	.26 5.33	30 10	266 451	75 79	17.7 90.3	.11 2.30	30 10	186 315	70 73	12.4 63.0	.05 1.03
	481	3		22,110	20	502	81	50.2	1.07	20	406	77	40.6	.46	20	284	72	28.4	.21
			V		30	451	79	30.1	.39	30	365	75	24.4	.17	30	253	71	16.9	.07

Unit Heaters

NOTES:

- ① Water temperature at the unit heater.
- ② Standard CFM measured at 70°F with density of .075 lb/cu ft.
- ③ Heat load in thousands of Btu/hr.

NOTE:

Leaving air temperature and MBH from table on previous page must be corrected for water temperatures other than 200° F and entering air temperatures other than 60° F. Liquid flow rates and pressure drops are not corrected.

Table below lists the correction factors. To determine correction factors falling between those shown, use the next lowest water temperature and the next highest entering air temperature shown.

MBH (corrected) = MBH (from page 390) x Correction Factor

LAT (corrected) = EAT + (MBH (corrected) x 926/CFM)

Water $\Delta T = MBH$ (corrected) x 2.00/USGPM

Correction Factors	forrection Factors Based on 200°F $^{ m O}$ Entering Water, 60°F $^{ m O}$ Entering Air												
Entering Water					Temperat	ure of Enteri	ng Air (°F)						
Temp. (°F)	0	10	20	30	40	50	60	70	80	90	100		
160	1.23	1.14	1.05	0.96	0.88	0.80	0.72	0.63	0.57	0.48	0.41		
170	1.31	1.21	1.12	1.04	0.95	0.87	0.79	0.70	0.63	0.55	0.48		
180	1.38	1.29	1.20	1.11	1.02	0.94	0.86	0.77	0.70	0.62	0.55		
190	1.46	1.36	1.27	1.18	1.10	1.01	0.93	0.85	0.77	0.69	0.62		
200	1.54	1.44	1.35	1.26	1.17	1.09	1.00	0.92	0.84	0.76	0.68		
210	1.61	1.52	1.42	1.33	1.25	1.16	1.07	0.99	0.91	0.83	0.75		
220	1.69	1.59	1.50	1.41	1.32	1.23	1.14	1.06	0.98	0.90	0.82		
230	1.77	1.67	1.57	1.48	1.39	1.30	1.22	1.13	1.05	0.97	0.89		
240	1.84	1.75	1.65	1.55	1.47	1.37	1.29	1.20	1.12	1.04	0.96		
250	1.92	1.82	1.72	1.63	1.54	1.45	1.36	1.27	1.19	1.11	1.03		

		Co	mmon	Data		Steel 1	Fube / Alu	minum Fir	ı			el Tube / S			;	Stainles	ss Tube / S	Stainless F	Fin
Mo	401	Mo	tor		-		11 FP				Staini	ess Tube (11 FP	Steel Fin				10 FP		
Siz	· · · –	HP	RPM	CFM ②	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressure Drop (ft wg)	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressure Drop (ft wg)	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressur Drop (ft wg)
10	20	1/0	1,725	700	40	69	151	3.4	.30	40	51 45	127	2.5 1.5	.15	40	38	111	1.9	.08
10	12	1/3		700	60 80	64 60	145 140	2.1 1.5	.16 .06	60 80	45 40	119 113	1.5	.05 .02	60 80	34 30	106 99	1.2 .7	.03 .01
					40	96	128	4.8	.61	40	79	116	4.0	.25	40	59	101	2.9	.14
12	22	1/3		1,320	60	86	120	2.9	.21	60	71	110	2.4	.10	60	53	97	1.8	.05
_	\rightarrow				80 40	75 137	113 124	1.9 6.8	.09 .28	80 40	62 116	104 114	1.6 5.8	.04	80 40	47 84	93 99	1.2 4.2	.02
14	12	1/3		1,980	60	120	116	4.0	.10	60	101	107	3.4	.05	60	74	95	2.5	.07
					80	103	108	2.6	.04	80	86	100	2.1	.02	80	63	90	4.6	.01
		1/0		0.010	40	185	119	9.2	.41	30	148	107	7.4	.18	40	108	94	5.4	.09
16	52	1/2		2,910	60 80	162 140	112 105	5.4 3.5	.14 .06	60 80	131	102 96	4.4 2.8	.06 .03	60 80	94 82	90 86	3.1 2.1	.03 .01
					40	240	117	12.0	.58	40	203	108	10.2	.26	40	146	95	7.3	.13
18	32	3/4		3,900	60	213	111	7.1	.20	60	179	103	6.0	.09	60	129	91	4.3	.04
					80 40	185 296	104	4.6 14.8	.09	80 40	158 251	97 111	3.9 12.5	.04 .34	80 40	113	87	2.8 8.9	.02
20	12	3/4		4,560	40 60	296	120 114	8.8	.74 .26	40 60	201	106	7.5	.34 .12	40 60	178	96 93	5.4	.16
	~	0/ 1	V	1,000	80	233	107	5.8	.11	80	197	100	4.9	.05	80	141	89	3.5	.03
			1,125		40	444	129	22.2	1.00	40	373	118	18.6	.60	40	264	101	13.2	.28
24	12	1-1/2		6,000	60 80	405 363	123 116	13.5 9.1	.37 .17	60 80	336 301	112 107	11.2 7.5	.22 .10	60 80	238 214	97 93	7.9 5.4	.10
	+				40	721	131	36.0	1.57	40	596	119	29.8	.10	40	421	102	21.1	.05
30)2	2		9,400	60	660	125	22.0	.59	60	543	114	18.1	.36	60	383	98	12.8	.17
					80	599	119	15.0	.27	80	493	109	12.3	.17	80	348	94	8.7	.08
36		2		12,160	40 60	950 873	132 127	47.5 29.1	2.24 .84	40 60	781 714	120 114	39.1 23.8	1.46 .54	40 60	557 511	102 99	27.8 17.0	.69 .26
30	2	2	•	12,100	80	799	127	29.1	.04 .40	80	654	114	23.0 16.4	.25	80	465	99	11.6	.20
			870		40	1,167	131	58.4	.32	40	956	118	47.8	.22	40	704	103	35.2	.11
42	22	3		15,160	60	1,048	124	34.9	.12	60	856	112	28.5	.08	60	632	99	21.1	.04
_	\rightarrow				80 40	933 1,543	117 131	23.3 77.2	.05	80 40	763	107 120	19.1 64.7	.03 .31	80 40	560 939	94 103	14.0 47.0	.02
48	32	3		20,040	60	1,392	124	46.4	.43	60	1,158	114	38.6	.11	60	848	99	28.3	.15
				- ,	80	1,255	118	31.4	.07	80	1,045	108	26.1	.05	80	753	95	18.8	.02
			1,725		40	43	109	2.1	.56	40	33	98	1.7	.32	40	24	88	1.2	.13
10	ו וו	1/3		810	60 80	38 34	104 98	1.3 .8	.20 .09	60 80	30 26	94 90	1.0 .7	.11 .05	60 80	21 19	85 82	.7 .5	.05
	\rightarrow				40	63	103	3.2	.03	40	49	94	2.5	.03	40	35	84	1.8	.02
12	21	1/3		1,350	60	57	99	1.9	.33	60	45	91	1.5	.20	60	32	82	1.1	.08
					80	50	95	1.3	.15	80	39	87	1.0	.08	80	28	79	.7	.03
14	11	1/3		2,590	40 60	91 80	93 89	4.6 2.7	.45 .15	40 60	71 63	86 83	3.6 2.1	.26 .09	40 60	50 44	78 76	2.5 1.5	.10
1 13		1/5		2,000	80	69	85	1.7	.06	80	55	80	1.4	.03	80	38	74	1.0	.03
					40	117	93	5.8	.61	30	98	87	4.9	.33	40	69	79	3.5	.13
2 16	61	1/2		3,330	60	103	89	3.4	.21	60	87	84	2.9	.12	60	61	77	2.0	.04
20	\rightarrow				80 40	89 150	85 91	2.2 7.5	.09 .83	80 40	77	81 86	1.9 6.3	.05 .46	80 40	54 87	75 78	1.4 4.4	.02
2 18	31	3/4		4,420	60	133	88	4.4	.03	60	1120	83	3.7	.16	60	78	76	2.6	.06
		-, -		.,	80	117	84	2.9	.18	80	99	81	2.5	.07	80	69	74	1.7	.03
				5 400	40	185	92	9.2	1.07	40	153	86	7.6	.58	40	107	78	5.4	.22
20	ן וו	3/4	•	5,430	60 80	164 144	88 85	5.5 3.6	.38 .16	60 80	138 122	84 81	4.6 3.1	.21 .09	60 80	96 84	76 74	3.2 2.1	.08 .03
			1,125		40	263	95	13.2	1.68	40	214	88	10.7	.74	40	149	80	7.4	.33
24	11 [.]	1-1/2	1	7,020	60	239	92	8.0	.62	60	192	85	6.4	.26	60	135	78	4.5	.12
	\rightarrow				80	212	88	5.3	.27	80	173	83	4.3	.12	80	121	76	3.0	.05
30	11	2		10,660	40 60	408 372	96 92	20.4 12.4	2.53 .93	40 60	329 298	89 86	16.7 9.9	1.13 .41	40 60	234 213	80 79	11.7 7.1	.54 .20
50	~	-		10,000	80	334	89	8.4	.42	80	269	83	6.7	.19	80	192	77	4.8	.20
	\top				40	537	97	26.9	3.75	40	425	89	21.3	1.64	40	302	81	15.1	.77
36	61	2	. ↓	13,440	60	494	94	16.5	1.41	60	389	87	13.0	.61	60	276	79	9.2	.29
-	+		870		80 40	447 661	91 97	11.2 33.0	.65 .57	80 40	356 528	85 90	8.9 26.4	.29 .25	80 40	250 362	77 80	6.2 18.1	.13
42	21	3		16,530	60	586	97	19.5	.20	60	466	86	15.5	.25	60	323	78	10.1	.04
					80	520	89	13.0	.09	80	411	83	10.3	.04	80	286	76	7.1	.02
	, [<u> </u>		211.00	30	876	97	43.8	.82	40	700	89	35.0	.35	40	492	81	24.6	.16
48	51	3	•	22,110	60 80	783 693	93 89	26.1 17.3	.29 .13	60 80	630 564	86 84	21.0 14.1	.12 .06	60 80	442 392	79 76	14.7 9.8	.06 .02

Unit Heaters

NOTES:

Water temperature at the unit heater.
 Standard CFM measured at 70°F with density of .075 lb/cu ft.
 Heat load in thousands of Btu/hr.

NOTE:

Leaving air temperature and MBH from table on previous page must be corrected for water temperatures other than 300°F and entering air temperatures other than 60°F. Liquid flow rates and pressure drops are not corrected.

Table below lists the correction factors. To determine correction factors falling between those shown, use the next lowest water temperature and the next highest entering air temperature shown.

MBH (corrected) = MBH (from page 390) x Correction Factor

LAT (corrected) = EAT + (MBH [corrected] x 926/CFM)

Water $\Delta T = MBH$ (corrected) x 2.08/USGPM

Correction Factors	Correction Factors Based on 300°F ${}^{m O}$ Entering Water, 60°F Entering Air													
Entering Water					Temperat	ure of Enteri	ng Air (°F)							
Temp. (°F)	0	10	20	30	40	50	60	70	80	90	100			
260	1.15	1.10	1.04	0.99	0.94	0.88	0.83	0.78	0.73	0.69	0.64			
270	1.19	1.14	1.08	1.03	0.98	0.93	0.88	0.82	0.78	0.73	0.68			
280	1.23	1.18	1.13	1.08	1.02	0.97	0.92	0.87	0.82	0.77	0.72			
290	1.27	1.22	1.17	1.12	1.07	1.01	0.96	0.91	0.86	0.81	0.76			
300	1.31	1.26	1.21	1.16	1.11	1.05	1.00	0.95	0.90	0.85	0.80			
310	1.35	1.30	1.25	1.21	1.15	1.10	1.04	0.99	0.94	0.89	0.84			
320	1.41	1.36	1.30	1.26	1.19	1.14	1.09	1.03	0.98	0.93	0.88			
330	1.45	1.40	1.34	1.30	1.23	1.18	1.13	1.07	1.02	0.97	0.92			
340	1.49	1.44	1.39	1.34	1.27	1.22	1.17	1.11	1.06	1.01	0.95			
350	1.54	1.48	1.43	1.38	1.33	1.26	1.21	1.15	1.10	1.05	1.00			
360	1.58	1.52	1.47	1.42	1.36	1.30	1.25	1.20	1.14	1.09	1.04			
370	1.62	1.57	1.51	1.46	1.40	1.35	1.29	1.24	1.18	1.13	1.08			
380	1.66	1.61	1.55	1.50	1.44	1.39	1.33	1.28	1.22	1.17	1.12			
390	1.71	1.65	1.60	1.54	1.49	1.43	1.37	1.32	1.27	1.21	1.16			
400	1.74	1.69	1.63	1.57	1.53	1.47	1.42	1.36	1.31	1.25	1.20			

391

Mounting Heights, Throws and Spreads **Armstrong**[®]

The mounting heights, throws and spreads listed below are based on an air temperature rise (Δ T) of 40°F. To arrive at these values for temperature rises other than 40°F, first determine the actual temperature rise from the appropriate performance data page. Then multiply the values from table below by the correction factors shown.

NOTES:

- 1. Minimum mounting height is 7 feet.
- 2. Mounting height is measured from bottom of unit to floor.
- 3. Values in the table were determined with louvers at 45°.
- 4. If four-way discharge louvers are used for horizontal applications, multiply throws by 0.8.
- 5. Values given are based upon average conditions and could be severely affected by such factors as obstructions, cross drafts, etc.

Discharge Temperature **Correction Factors**

Actual ΔT

10 20

30

40

50 60

70

80

90

100

110

120

130

140

150

Correction

1.18

1.12 1.06

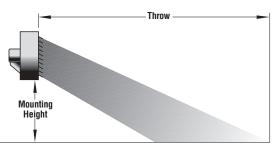
1.00 0.94

0.88

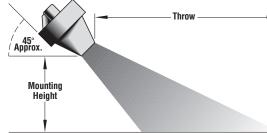
0.82

0.76

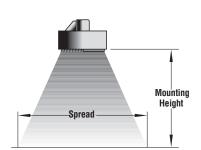
0.70

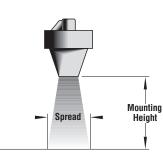

0.64 0.58

0.51


0.45

0.39

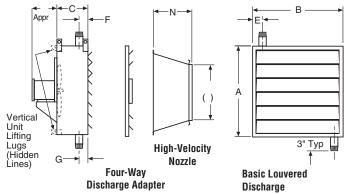

0.33


Horizontal Discharge—Standard Louvers

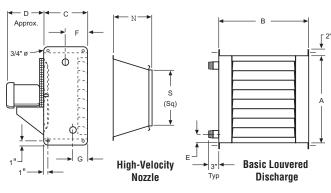
Horiz

Vertical Discharge—Four-Way Louvers

Horizonta	l Discharge	High-Velocit	y Nozzle		١	/ertical Di	scharge—H	igh-Velocity N	ozzle			
llnit Heat	er Mounting	Heights, Throv	n2 hns av	reads								
onn noat	-	rizontal Louvered	və ana op		ertical Louvered		Horizo	ontal High Veloc	ity	Vert	ical High Veloci	ty
Model Size	Outlet Velocity FPM	Max. Mounting Height (ft)	Throw (ft)	Outlet Velocity FPM	Max. Mounting Height (ft)	Spread (ft)	Outlet Velocity FPM	Max. Mounting Height (ft)	Throw (ft)	Outlet Velocity FPM	Max. Mounting Height (ft)	Spread (ft)
101	600	10	30	660	10	25	2,310	12	40	2,310	17	15
121	750	12	44	820	13	38	2,050	14	58	2,050	22	20
141	1,090	14	53	1,200	16	48	2,620	17	72	2,620	27	25
161	1,110	15	66	1,220	17	52	2,290	18	88	2,290	29	27
181	1,200	16	72	1,320	18	55	2,270	19	94	2,270	31	29
201	1,220	17	76	1,340	18	56	2,380	20	101	2,380	31	29
241	1,360	18	82	1,500	19	59	2,340	22	109	2,340	32	30
301	1,340	20	84	1,500	20	62	2,270	24	112	2,270	34	32
361	1,220	21	88	1,340	21	65	2,210	25	122	2,210	36	34
421	1,110	21	118	1,230	21	66	2,180	25	158	2,180	36	34
481	1,140	22	118	1,270	22	70	2,210	26	160	2,210	37	35
102	550	9	22	600	9	24	2,000	11	30	2,000	15	13
122	730	12	37	800	13	38	2,000	14	49	2,000	22	20
142	840	13	45	920	15	46	2,000	16	62	2,000	26	24
162	970	15	56	1,060	17	51	2,000	18	75	2,000	29	27
182	1,050	16	66	1,160	18	55	2,000	19	86	2,000	31	29
202	1,030	16	69	1,130	18	56	2,000	19	92	2,000	31	29
242	1,170	17	73	1,280	19	59	2,000	20	97	2,000	32	30
302	1,180	19	74	1,320	20	62	2,000	23	98	2,000	34	32
362	1,100	20	78	1,210	20	62	2,000	24	110	2,000	34	32
422	1,020	21	110	1,130	21	66	2,000	25	145	2,000	36	34
482	1,040	22	110	1,150	22	70	2,000	26	147	2,000	37	35


Sound Data

Since unit heaters use fans and motors to move air, sound is a natural result. The sound rating of a particular unit may limit its use in a given application. The following sound rating table is presented to allow you to select a unit based upon an acceptable sound level.


Sound Data	
Unit Heater Size	dBA Sound * Pressure Level at 3 Feet from Unit
101	63
102	63
121	63
122	63
141	66
142	65
161	74
162	73
181	77
182	76
201	81
202	81
241	82
242	82
301	84
302	83
361	85
362	85
421	84
422	83
481	85
482	85

* Per fan.

10"–20" Units

24"-48" Units

NOTE: Connections are MPT

(Four-way louver section *replaces* basic louver section)

Dimensio Model		eigins			Dimens		V	zontal or ers ype (lb)	Additional Weight for High-Velocity					
Size	A	В	C	D	E	F	G	Conn. MPT	N	S	ST/AL	ST/ST	SS/SS	Discharge Nozzle (lb)
101 102	15	17-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	10	7	95 135	105 155	95 145	11
121 122	17-1/4	19-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	10-3/4	9-3/4	105 150	120 180	110 165	14
141 142	19-1/2	21-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	11-1/2	11-3/4	120 175	140 210	125 190	16
161 162	22	23-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	12-1/4	14-1/4	135 195	165 240	145 220	19
181 182	24-1/4	25-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	13	16-3/4	150 220	185 280	160 250	22
201 202	26-1/2	27-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	13-3/4	18	170 245	210 315	180 285	24
241 242	32	34-1/4	18	12	2-7/16	6-3/4	4-1/4	2	14-1/2	20-3/4	290 360	350 470	320 420	17
301 302	39-1/4	40-1/4	18	12-1/2	1-13/16	6-3/4	4-1/4	2	18-13/16	26	360 460	460 650	410 550	31
361 362	45-1/4	46-1/4	18	12-1/2	2-5/8	6-1/2	4-1/2	2-1/2	22-7/8	29-1/2	440 550	560 800	500 680	47
421 422	52-1/4	52-1/4	22	15	2-5/8	6-1/4	4-3/4	3	29-3/8	33	680 830	850 1,150	770 1,010	35
481 482	59-1/4	58-1/4	22	15	2-3/8	6-1/4	4-3/4	3	31-1/4	38	800 990	1,030 1,430	920 1,240	47

* Dual units have two fans and two motors and, therefore, have twice the width and weight.

Armstrong[®] Installation Guidelines

Below are some abbreviated installation guidelines. Consult Armstrong for more detailed installation, operation and maintenance instructions.

General Piping Guidelines

- 1. Provide adequate support from the building structure to eliminate piping stresses.
- 2. Allow movement of the piping to provide for expansion and contraction. Use swing joints where possible.
- 3. Adequately support all piping. Do not use unit heater for this purpose.

Steam Piping

- 1. Slope steam piping under 10' long toward the steam main. If steam pipe is longer than 10', slope toward the unit and install a drip trap before the unit.
- 2. All steam and condensate lines must be of the proper size to carry the calculated loads.

- 3. Only continuously draining traps such as inverted bucket or float and thermostatic types should be used. If an inverted bucket trap is used, an air vent should be installed downstream of the unit and before the trap.
- 4. Maintain the unit heater outlet size to the trap takeoff.
- 5. If condensate is to be lifted or if the return system is pressurized, use a check valve after the steam trap and provide a gate valve on the strainer to drain the heater in the off season.

Liquid Piping

- 1. Supply return mains must be sloped for adequate venting.
- 2. Provide air vents at all high points.
- Circulating pumps must be of adequate size to provide the required liquid flow and to overcome the system pressure drops.

Sample Specifications

Unit heaters supplied shall be manufactured with the methods and materials specified as follows:

General

Enclosures and Louvers—Shall be of minimum 14 ga galvanized steel and finished in gray enamel. (Epoxy coatings and other protective finishes are available.) Fans shall have aluminum alloy blades with steel hubs. (Epoxy coatings and other protective finishes are available.)

Motors—Shall be heavy-duty industrial type TEFC, ball bearing, standard NEMA frame motors. Electrical supply shall be _____ phase _____ volts 60 Hz. (Explosion-proof and other motor types available.)

Fan Guards—Shall be provided with each unit and be OSHA approved.

Core Type Specific

Steel tube/steel fin:

Tubes—Shall be 1" OD 12 ga steel tube. Minimum wall thickness shall be .109".

Fins—Shall be helically wound L-footed and of minimum .024" thick steel.

Headers-Shall be of carbon steel not less than .145" thick.

Connections-Shall be of Schedule 80 carbon steel pipe.

Assembly—Shall be welded to form a monometallic, internally wetted surface. Standard testing pressure at 525 psig. Pressure parts all welded.

Steel tube/aluminum fin:

Tubes—Shall be of 1" OD 12 ga steel tube. Minimum wall thickness shall be .109".

Fins—Shall be helically wound embedded type and of minimum .020" thick aluminum.

Headers-Shall be of carbon steel not less than .145" thick.

Connections—Shall be of Schedule 80 carbon steel pipe.

Assembly—Shall be welded to form a monometallic, internally wetted surface. Standard testing pressure at 525 psig.

Stainless steel tube/stainless steel fin:

Tubes—Shall be 304 L (or 316 L) 1" OD 14 ga stainless steel tube. Minimum wall thickness shall be .083".

Fins—Shall be helically wound L-footed and of minimum .020" thick 304 (or 316) stainless steel.

Headers—Shall be of the same stainless steel as the tubes not less than .109" thick.

Connections—Shall be of Schedule 40 stainless steel pipe.

Assembly—Shall be welded to form a monometallic, internally wetted surface. Standard testing pressure at 525 psig.

Stainless steel tube/steel fin:

Tubes—Shall be 304 L (or 316 L) 1" OD 14 ga stainless steel tube. Minimum wall thickness shall be .083".

Fins—Shall be helically wound L-footed and of minimum .024" thick steel.

Headers—Shall be of the same stainless steel as the tubes not less than .109" thick.

Connections—Shall be of Schedule 40 stainless steel pipe.

Assembly—Shall be welded to form a monometallic, internally wetted surface. Standard testing pressure at 525 psig.

Armstrong[®] Rotabreath High Mounted Series

Product Features

- · Designed for steam, water or glycol
- 500 MBH (146 kW) to 1500 MBH (440 kW)
- One or two fans
- Rotating of fixed discharge
- High velocity nozzle
- · Custom designs available

Product Benefits

- · Less piping, wiring and controls
- · Ideal in a low temp heat recovery loop (single point)
- · Ease of maintenance
- Redued installation/shutdown time
- Simple installation, fewer units to install
- One unit averages 300 feet diameter of coverage
- Reduced temperature stratification


Typical Applications:

- Ideal for open space (ex. Aircraft Hangars)
- Used for high mounting (high ceiling) applications
- Ideal for low glycol temperatures
- Heat recovery application (single source)

Available in:

- Heavy Duty Series 6000
- Plate Fin Duralite

Hot Breath™/Hot Bin™ Portable Heaters

Armstrong offers their Heavy Duty Industrial Unit Heaters mounted on a Heavy Duty custom Service Cart with Pre-Piped Assemblies. This design offers the customer portable, on demand, spot heat treatment to any area or equipment within their facility.

Applications

- Integrated Pest Management Heat Treatment for insect control. Dry Controlled Heat up for Structural (CAQ) and Targeted (Bin/Silo) areas (BAQ)
- · Critical Area Heating during general plant shutdowns
- Temporary Comfort Heat
- Freeze Protection
- Construction Site work for Concrete Curing with controlled, low humidity, clean air

Purchase or Rent

• Purchase, Rental or Rent-To-Own Options

TEFC or Exp. Proof: (Industrial Rated)

- CAQ in Standard TEFC or Exp. Proof /FC options
- CAQ 115/230/1/60 1 HP (de-rated) with Prop Fan
- BAQ in Standard Exp. Proof options
- BAQ 230/460/3/60 3 HP with Centrifugal Fan

Pre-Assembled and Piped Package

Standard (150 PSIG Max. Steam Service Rating)

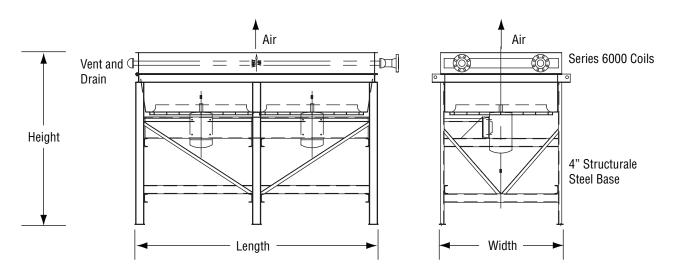
- Units designed to fit through 36" Doorways
- Armstrong Heavy Duty Full Size Y-Strainer w/Blow down
- Armstrong Adjustable Temp. Control Valve w/Capillary
- Armstrong Heavy Duty Industrial Finned Heating Coil
- Armstrong Inverted Bucket Steam Trap with Drain
- Heavy Duty Casing Material
- Industrial Prop Fan (CAQ) or Centrifugal Fan (BAQ) with OSHA Guard
- Steam & Condensate Piping interconnected
- Inlet/Outlet Dixon "BOSS" Steam / Condensate Fittings
- · Heavy Duty Steel Cart, welded and bolted
- Heavy Duty Industrial Caster/Wheels with (2) Locks
- Heavy Duty Wood Shipping Containers (Rental Units supplied with Re-Usable Shipping Containers)
- 2 Way Adjustable Discharge Louvers (CAQ)
- 12" Discharge Nozzle with 25Ft Hi-Temp Flex Duct & Clamps (BAQ)
- Dixon "Boss" Clamps / Fittings for Field Connections
- Heavy Duty, Steam Rated (250dgF) Hose (2 50ft)
- Heavy Duty Electric Cable. Plugs and Disconnect Pre-Wired on Single Phase (only).(Exp. Proof Shipped Loose)

Options

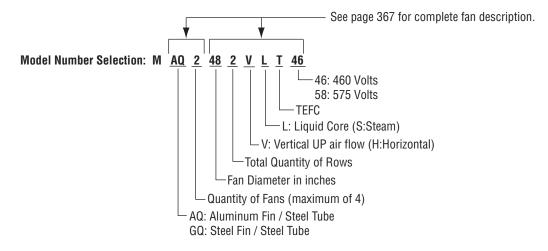
 Custom Options are available for Purchased Units to meet specific customer demands.

CAQ-202-HS-T12 (380 MBH - 50 psig @ 60°F EAT)

BAQ-300-HS-X23 Custom Packaged System



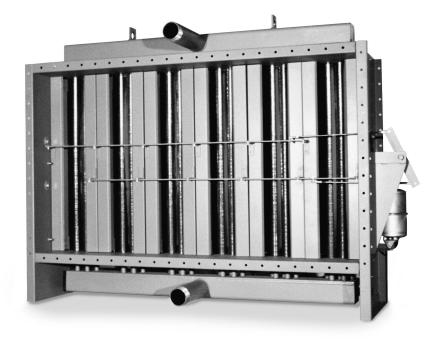
HI-Temp Steam Rated Hose and Quick Connectors



Available Options

- TEMA and API 661 design available
- · ASME Section VIII Div. 1 available on pressure parts -
- consult factory
- TEMA and API 661 design available
- Epoxy coating available
- Hail Guard
- Removable Covers
- Removable Coils contact factory

Dimensions										
	Unit Dimensions				Length					
	Widt	h			Quantity of Fa	ans			He	eight
Fan Size	wiut	1		2	3			4		
	in	mm	in	mm	in	mm	in	mm	in	mm
36"	49-1/4	1,251	96-1/2	2,451	142-3/4	3,626	189	4,801	46	1,168
42"	56-1/4	1,429	108-1/2	2,756	160-3/4	4,083	213	5,410	54	1,372
48"	63-1/4	1,607	120-1/2	3,061	178-3/4	4,540	237	6,020	60	1,524


Note: Custom and larger dimensions available. Consult factory.

For sound pressure level, contact factory.

Duramix[™] Face and By-pass Heating Coil

The Armstrong Duramix[™] heating coil controls air temperature while operating at full steam pressure. Once set, the desired leaving air temperature is maintained by Duramix[™] regardless of variations in the entering air temperature. The Armstrong Duramix[™] heating coil is simple, yet very effective, and it is easy to install and maintain.

How Does It Work?

Special dampers, operated by a pneumatic or electric actuator connected to a temperature sensor, adjust the leaving air temperature by channeling the appropriate amount of entering air across the heating coils and diverting the remaining air through by-pass channels. As entering air temperature gets closer to or farther from the set point, the dampers are closed or opened accordingly.

Typical Applications

- HVAC air preheat systems
- Make-up air systems
- Combustion air preheat systems

Advantages

- Maximum freeze protection
- Accurate temperature control
- Even leaving air temperature

Why Choose Armstrong Duramix[™]?

The Armstrong Duramix[™] heating coil combines the advantages of a face and by-pass system with the quality, heavy-duty construction inherent in all Armstrong coils. From an all-welded, monometallic coil to corrosion-resistant linkages to a tough casing assembly, the Armstrong Duramix[™] coil is built to provide long-lasting, trouble-free service.

Materials

- Heavy-Duty Tubes: 12 ga steel (type Q) 10 ga steel (type R) 14 ga 304L stainless steel (type W) 14 ga 316L stainless steel (type Y)
- Heavy-Duty Fins: 0.020" thick aluminum (type A) 0.030" thick aluminum (type B) 0.024" thick steel (type G) 0.020" thick 316L stainless steel (type K) 0.016" thick copper (type F)
- Monometallic Coil Design: Prevents galvanic corrosion
- Welded Tube-to-Header Joints: Prevent leaks
- All Stainless Steel Damper Linkage Assembly: Prevents dampers from "freezing up" due to corrosion
- 12 ga steel casing provides a strong, durable frame Optional: 12 ga 304L stainless steel
- 16 Ga. Louvers

Design Limit

150 psig @ 400°F (10 bar @ 204°C)

Custom-built Duramix face and by-pass heating coils are also available. Please consult factory.

Coil Type

• Available also in centifeed, tandem and centifeed tandem, consult factory.

Duramix[™] Sizing and Selection **Armstrong**[®]

All sizes are for vertical tubes and horizontal airflow only.

For help in selecting the right size for either a new or retrofit application, please call us. Left hand Duramix shown below.

1-Ro	w Units																									
	N	o. of Tub	e Bundle:	S	2	2	3		4	ļ	5	i	6		7	,	8	3	ç)	1	0	1	1	1	2
	(Casing W	Vidth (in)		25-	3/8	36-	1/8	46-	7/8	57-	5/8	68-	1/4	7	9	89-	3/4	100-	-1/2	111	-1/8	121	-7/8	132-	-5/8
Size		F (i	in)		3-3	3/4	3-3	/4	3-3	8/4	3-3	8/4	2-1	/8	2-1	/8	2-	1/8	2-1	1/8	2-7	1/8	2-1	1/8	2-1	1/8
	Casing	G (in)	LI (in)	L (in)	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT
	Length	G (III)	H (in)	J (in)	ft²	lb	ft2	lb	ft2	lb	ft²	lb	ft ²	lb	ft ²	lb	ft²	lb	ft ²	lb	ft2	lb	ft²	lb	ft²	lb
Α	44"				2.27	268	3.41	331	4.54	390	5.68	458	6.81	540	7.95	607	9.09	706								
В	56"				3.41	308	5.11	374	6.81	448	8.52	526	10.22	614	11.92	693	13.63	788								
С	68"	4-3/8	5-1/8	5-15/16	4.54	339	6.81	420	9.09	501	11.36	587	13.63	681	15.90	769	18.17	867	20.44	930	22.71	1,013	25.09	1,096	27.37	1,179
D	80"	4-3/0	J-1/0	5-15/10			8.52	460	11.36	546	14.20	647	17.03	753	19.87	844	22.71	958	25.55	1,037	28.39	1,130	31.37	1,230	34.22	1,330
E	93-11/16"								14.76	627	18.45	738	22.15	849	25.84	961	29.53	1,084	33.22	1,183	36.91	1,284	40.77	1,385	44.48	1,487
F	116"										22.81	825	27.38	940	31.94	1,070	36.50	1,195	41.06	1,320	45.63	1,430	50.19	1,540	54.75	1,667

2-Ro	w Units																									
	No	o. of Tub	e Bundles	5	2		3		4	Ļ	5	5	6	i	ī	7		3	g)	1	0	1	1	1	2
	(Casing W	/idth (in)		25-3	3/8	36-	1/8	46-	7/8	57-	5/8	68-	1/4	7	9	89-	3/4	100-	-1/2	111	-1/8	121	-7/8	132-	-5/8
Size		F (i	in)		3-1	/4	3-1	/4	3-1	/4	3-1	/4	5-1	/4	5-1	1/4	5-	1/4	5-1	/4	5-1	1/4	2-1	1/8	2-1	1/8
	Casing	G (in)	LI (in)	J (in)	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT
	Length	G (III)	H (in)	J (III)	ft²	lb	ft²	lb	ft2	lb	ft²	lb	ft²	lb	ft²	lb	ft²	lb	ft²	lb	ft²	lb	ft2	lb	ft²	lb
Α	44"				2.27	308	3.41	382	4.54	456	5.68	538	6.81	578	7.95	756	9.09	735								
В	56"				3.41	351	5.11	431	6.81	520	8.52	613	10.22	719	11.92	839	13.63	977								
С	68"	3-1/4	3-3/8	3-1/8	4.54	383	6.81	482	9.09	580	11.36	682	13.63	795	15.90	905	18.17	1,016	20.44	1,126	22.71	1,237	25.09	1,348	27.37	1,459
D	80"	3-1/4	3-3/0	3-1/0			8.52	528	11.36	632	14.20	752	17.03	877	19.87	1,048	22.71	1,193	25.55	1,318	28.39	1,420	31.37	1,522	34.22	1,624
E	98"								14.76	723	18.45	856	22.15	1,044	25.84	1,196	29.53	1,337	33.22	1,472	36.91	1,598	40.77	1,724	44.48	1,850
F	116"										22.81	960	27.38	1,211	31.94	1,344	36.50	1,481	41.06	1,626	45.63	1,873	50.19	1,926	54.75	2,076

Consult factory for additional size options.

Design Limits: 150 psig @ 400F

Model Number Selection: BV1 - 2A - A11 - Q08 - TA - LH/RH

- Left Hand / Right Hand (LH Shown Above)

L Thermostat (T), Pneumatic (P), Electric (E), Actuator (A—If Supplied)

-Tube Type, Gauge/Schedule, OD—See page 342

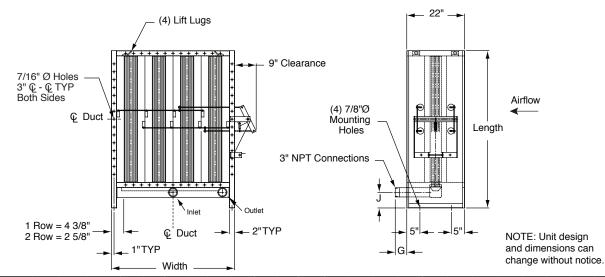
Fin Type, Fins per Inch—See page 342

No. of Tube Bundles, Casing Width / Casing Length

By-pass, Vertical, No. of Rows

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Heating and Cooling Coils


North America • Latin America • India • Europe / Middle East / Africa • China • Pacific Rim armstronginternational.com

Centifeed Duramix[™] Sizing and Selection

All sizes are for vertical tubes and horizontal airflow only.

For help in selecting the right size for either a new or retrofit application, please call us. Left hand Centifeed Duramix shown below.

1-Ro	w Units																									
	N	o. of Tub	e Bundle:	S	2		3		4	ļ	5	5	6		7	7	8	}	ę)	1	0	1	1	12	2
	(Casing W	Vidth (in)		25-	3/8	36-	1/8	46-	7/8	57-	5/8	68-	1/4	7	9	89-	3/4	100	-1/2	111-	-1/8	121	-7/8	132-	-5/8
Size		F (in)		3-3	8/4	3-3	6/4	3-3	3/4	3-3	3/4	2-1	/8	2-1	1/8	2-	1/8	2-1	1/8	2-1	1/8	2-	1/8	2-1	1/8
	Casing	G (in)	H (in)	J (in)	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT
	Length	u (iii)	11 (11)	J (III)	ft²	lb	ft²	lb	ft²	lb	ft²	lb	ft²	lb	ft²	lb	ft²	lb	ft²	lb	ft²	lb	ft2	lb	ft²	lb
Α	36"				2.27	268	3.41	331	4.54	390	5.68	458	6.81	540	7.95	607	9.09	706								
В	48"				3.41	308	5.11	374	6.81	448	8.52	526	10.22	614	11.92	693	13.63	788								
С	60"	4-3/8	5-1/8	5-15/16	4.54	339	6.81	420	9.09	501	11.36	587	13.63	681	15.90	769	18.17	867	20.44	930	22.71	1,013	25.09	1,096	27.37	1,179
D	72"	4-3/0	J=1/0	J=1J/10			8.52	460	11.36	546	14.20	647	17.03	753	19.87	844	22.71	958	25.55	1,037	28.39	1,130	31.37	1,230	34.22	1,330
E	90"								14.76	627	18.45	738	22.15	849	25.84	961	29.53	1,084	33.22	1,183	36.91	1,284	40.77	1,385	44.48	1,487
F	108"										22.81	825	27.38	940	31.94	1,070	36.50	1,195	41.06	1,320	45.63	1,430	50.19	1,540	54.75	1,667

2-Ro	w Units																									
	N	o. of Tub	e Bundles	6	2		3		4	ļ	Ę	5	6	i	1	7	8	}	g	1	1	0	1	1	1	2
	(Casing W	/idth (in)		25-	3/8	36-	1/8	46-	7/8	57-	5/8	68-	1/4	7	9	89-	3/4	100-	-1/2	111	-1/8	121	-7/8	132	-5/8
Size		F (i	in)		3-1	/4	3-1	/4	3-1	1/4	3-	1/4	5-1	/4	5-1	1/4	5-	1/4	5-1	/4	5-1	/4	2-	1/8	2-1	1/8
	Casing	G (in)	LI (in)	L (in)	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT	FA	WT
	Length	G (III)	H (in)	J (in)	ft²	lb	ft²	lb	ft²	lb	ft2	lb	ft²	lb	ft²	lb	ft²	lb	ft ²	lb	ft²	lb	ft²	lb	ft²	lb
Α	36"				2.27	308	3.41	382	4.54	456	5.68	538	6.81	578	7.95	756	9.09	735								
В	48"				3.41	351	5.11	431	6.81	520	8.52	613	10.22	719	11.92	839	13.63	977								
С	60"	3-1/4	3-3/8	3-1/8	4.54	383	6.81	482	9.09	580	11.36	682	13.63	795	15.90	905	18.17	1,016	20.44	1,126	22.71	1,237	25.09	1,348	27.37	1,459
D	72"	3-1/4	3-3/0	3-1/0			8.52	528	11.36	632	14.20	752	17.03	877	19.87	1,048	22.71	1,193	25.55	1,318	28.39	1,420	31.37	1,522	34.22	1,624
E	90"								14.76	723	18.45	856	22.15	1,044	25.84	1,196	29.53	1,337	33.22	1,472	36.91	1,598	40.77	1,724	44.48	1,850
F	108"										22.81	960	27.38	1,211	31.94	1,344	36.50	1,481	41.06	1,626	45.63	1,873	50.19	1,926	54.75	2,076

Consult factory for additional size options.

Design Limits: 150 psig @ 400°F

Model Number Selection: <u>CBV1</u> - <u>4C</u> - <u>A11</u> - <u>Q08</u> - <u>TA</u> - <u>LH/RH</u>

— Left Hand / Right Hand (LH Shown Above)

L Thermostat (T), Pneumatic (P), Electric (E), Actuator (A—If Supplied)

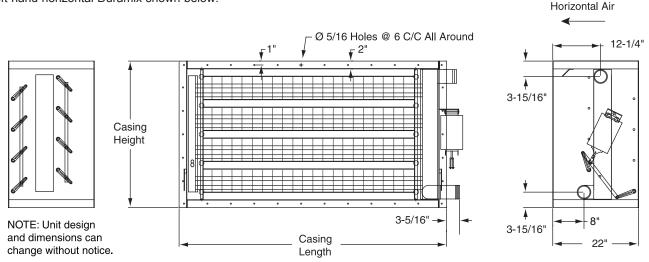
└─ Tube Type, Gauge/Schedule, OD—See page C-7

-Fin Type, Fins per Inch—See page C-7

└─ No. of Tube Bundles, Casing Width / Casing Length

- Centifeed By-pass, Vertical, No. of Rows

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.


401

Armstrong[®] Horizontal Duramix[™] Sizing and Selection

All sizes are for horizontal tubes and horizontal airflow only.

For help in selecting the right size for either a new or retrofit application, please call us.

Left hand horizontal Duramix shown below.

Si	ze	ļ	A	E	}	(;	[)
Casing Le	ength (in)	26-	1/2	32-	1/2	38-	1/2	44-	1/2
Size	Casing Height (in)	Face Area Ft. ²	Weight (lb)						
2	20-3/4	0.96	239	1.43	262	1.91	285	2.38	308
3	29-1/8	1.43	263	2.15	345	2.86	380	3.57	414
4	37-1/2	1.68	287	2.52	429	3.35	475	4.19	521
5	45-7/8	—	_	3.58	512	4.76	570	5.95	627
6	54-1/4	—	_	_	_	5.72	664	7.14	733
7	62-5/8	—	_	_	_	_	_	8.33	840
8	71	—	—	—	—		—	9.53	946

Reference weight only using steel tube 12 Ga. A-214 and aluminum keyfin 0.020" thick.

Si	ze	I	E	I	F		3	I	H
Casing L	ength (in)	50-	1/2	56-	1/2	62-	1/2	68-	·1/2
Size	Casing Height (in)	Face Area Ft. ²	Weight (lb)						
2	20-3/4	2.86	331	3.33	354	3.81	377	4.28	400
3	29-1/8	4.28	449	5.00	483	5.71	517	6.42	552
4	37-1/2	5.71	566	6.66	612	7.61	658	8.56	704
5	45-7/8	7.14	684	8.33	742	9.52	799	10.71	856
6	54-1/4	8.57	802	10.00	871	11.42	940	12.85	1,008
7	62-5/8	10.00	920	11.66	1,000	13.32	1,080	14.99	1,161
8	71	11.43	1,038	13.33	1,129	15.23	1,221	17.13	1,313

Reference weight only using steel tube 12 Ga. A-214 and aluminum keyfin 0.020" thick.

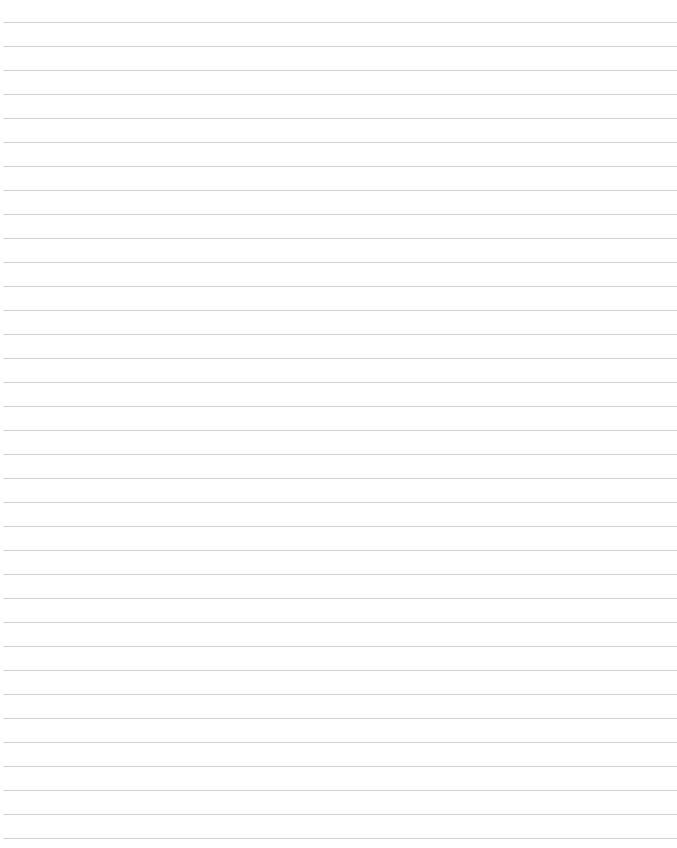
Design Limits: 150 psig @ 400°F

Hand of Coil

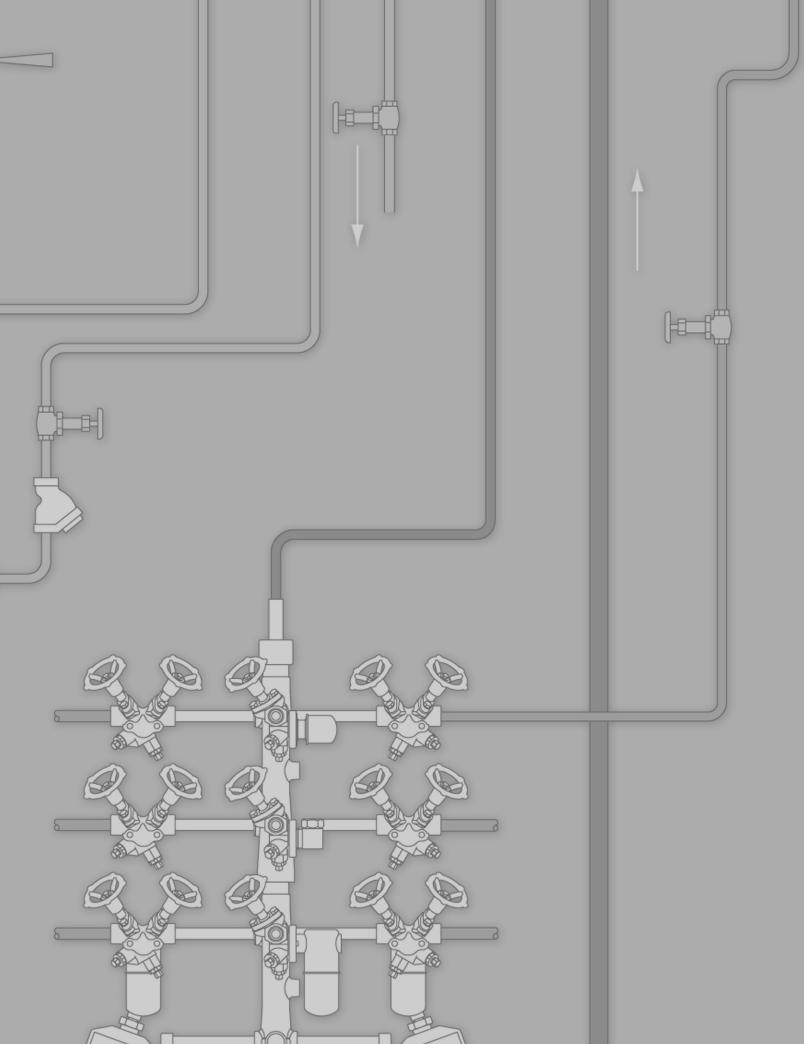
- Actuator Model (if required)

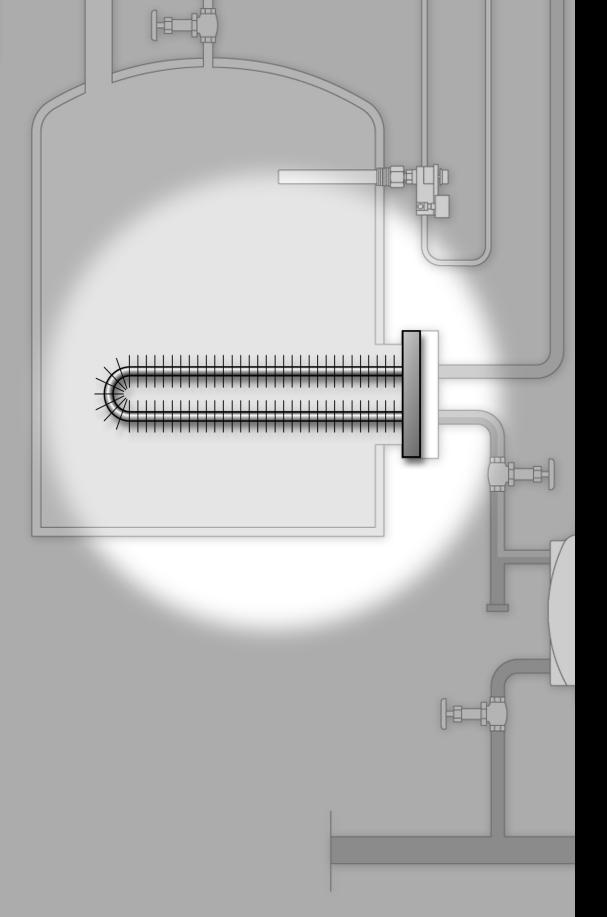
LTube Type, OD

-Fin Type, Fin per Inch

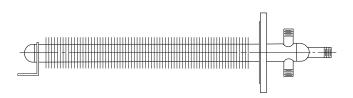

└─ # Tube Bundles, Casing Width/Casing Length

By-pass, Horizontal, # Rows. BHC: Centifeed Model

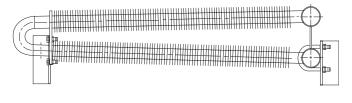

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.


402

Heating and Cooling Coils


Tank Heaters


Features/Benefits of Armstrong Tank Heaters


Flange Mounted Bayonet Type FBC and FBS

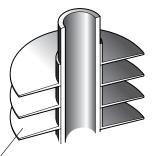
Base Mounted Direct Type BD

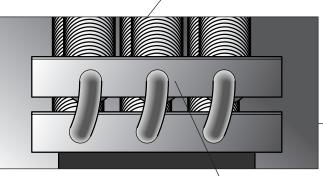
Flange Mounted Hairpin Type FHC and FHS

Base Mounted Hairpin Type BHC and BHS

Application Flexibility

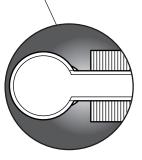
Four types of tank heaters are offered in several materials and sizes to suit your specific requirements. Several heaters are custom built, consult factory.


Space Savings


Flange mounted heaters are installed on various standard manhole sizes. You save internal space because only the heating element itself is inside. Steam and condensate connections are outside of the tank.

Heat Transfer Efficiency

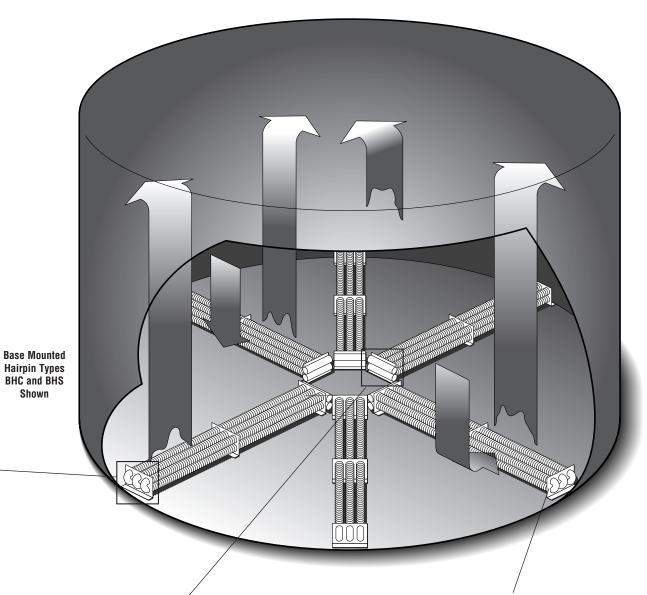
Stiff, helically wound L fin design for an efficient and long-lasting heat transfer surface.


Vertical fin surface provides uniform heating of liquid with a minimum of coking due to hot spots.

Durability Over Long Life

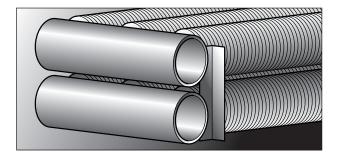
Pipes and headers are of heavy construction (minimum Sch. 40 pipe for steel). Greater thickness means a stronger, more corrosion-resistant design that lasts longer.

Corrosion Resistance


Pipes, headers and connections are welded together for a tough, single material joint. Eliminating dissimilar materials precludes galvanic corrosion, thereby lengthening service life.

Several heaters are custom built - consult factory.

406


Typical Tank Heater Arrangement

Fast, Direct Connection

Heaters are ready for connection to the steam and condensate systems as supplied. Numerous types of connections are available.

Base mounted heaters come with supports to allow for a proper distance between the tank bottom and the heating surface. This also helps to minimize the need for internal welding. Longer units are provided with mid-support members to further minimize inside welding and ensure rigid footing.

Minimum Installation Welding

Armstrong base-mounted tank heaters are installed and removed easily through manholes, eliminating the need for time-consuming welding inside the tank.

Armstrong[®] Tougher on the Job

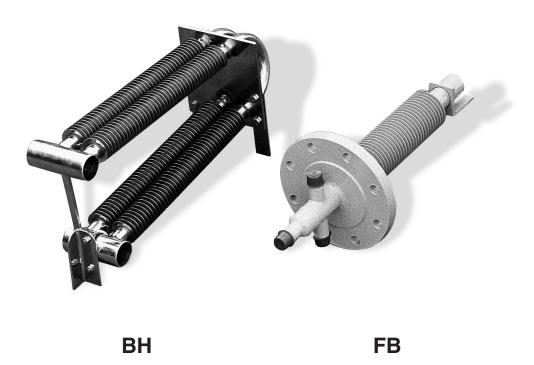
Armstrong tank heaters are built to withstand the rigorous demands encountered in industrial installations. The heavyduty features of our units were developed in response to a need for tank heaters that could provide efficient heat transfer without sacrificing structural integrity. These features include heavy-wall pipes and headers, thick L footed fins and all welded construction. In addition, the mono-metallic construction of our units precludes galvanic corrosion, and the finned surface is rigid enough to withstand high-pressure cleaning.

Experience gained over 80 years backs every Armstrong tank heater. As a steam system specialist, your Armstrong Representative can provide assistance with everything from the boiler to the condensate return system.

Quality products from Armstrong, plus the practical knowledge to integrate them into your total steam system, ensure an efficient and trouble-free installation.

Efficient Heat Transfer

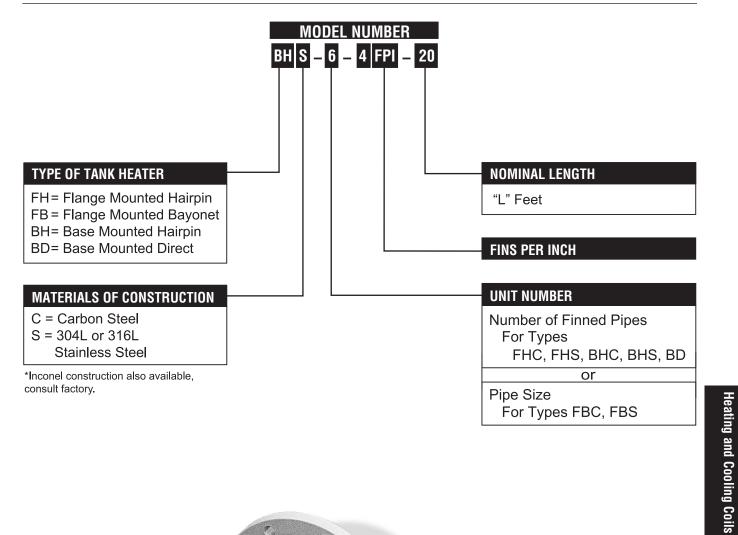
Finned pipe tank heaters are easier than bare pipe units to install, remove and repair. They are also more compact and provide superior efficiency in product heating. Finned pipe tank heaters provide up to 10 times as much heat transfer as an equivalent length of bare pipe, resulting in lower film or "skin" temperatures. This reduces coking of the product on the heat transfer surface and discoloration of heat-sensitive products. This buildup of deposits on the heater requires that more frequent cleanings be carried out to maintain maximum efficiency and original heat transfer design conditions. This helically wound finned pipe is best suited for horizontal units, with the fins being in the vertical plane. This increases the natural convection currents, which increases heat transfer and continuously wipes the coil surface to maintain cleanliness.

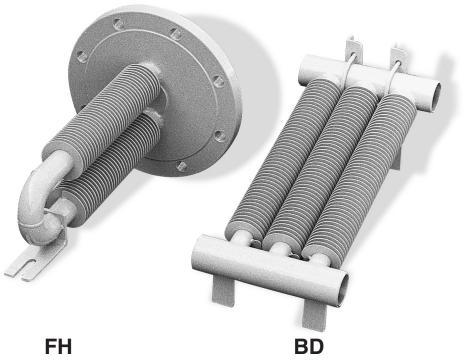

Options to Match Your Applications

Armstrong tank heaters are available in four standard configurations:

- Flange Mounted Hairpin—Types FHC and FHS
- Flange Mounted Bayonet—Types FBC and FBS
- Base Mounted Hairpin—Types BHC and BHS
- Base Mounted Direct-Type BD

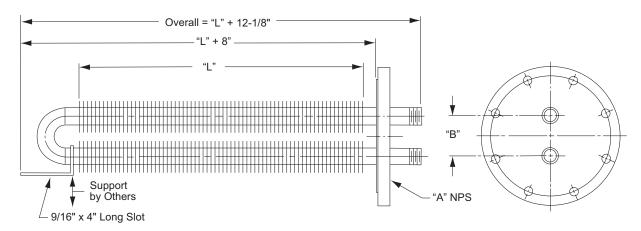
These four configurations offer a range of choices to suit most area coverage and thermal performance requirements. Each type includes a number of length, width and fin pitch options. All units are available in seamless carbon steel pipe construction. The hairpin and bayonet types are available in stainless steel. Liquid heated units and custom designs are also available.


Critical to the heating and maintenance of temperatures for a broad variety of products, Armstrong tank heaters are widely used in breweries, chemical and food processing plants, oil refineries, paper mills, tank storage farms, and in shipping and other industries.



From left to right, Base Mounted Hairpin, Flange Mounted Bayonet, Flange Mounted Hairpin and Base Mounted Direct.

Model Number Selection



Flange Mounted Hairpin Type FHC and FHS

Standard Sizes

FHC Ca	arbon Ste	el Units							
Туре	A Flange	B (in)	Nominal Length	Surfa	ce Area	(sq ft)	W	/eight (I	b)
	Size (in)	(111)	L (ft)	3 FPI	4 FPI	5 FPI	3 FPI	4 FPI	5 FPI
			2	11.6	14.9	18.1	71	74	77
			3	17.4	22.3	27.2	81	86	90
			4	23.2	29.8	36.3	91	97	103
			5	29.0	37.2	45.4	102	109	116
FHC-2	8	3-3/4	6	34.8	44.6	54.4	112	120	129
			7	40.6	52.1	63.5	122	132	142
			8	46.4	59.5	72.6	132	144	155
			9	52.3	67.0	81.6	142	155	168
			10	58.1	74.4	90.7	153	167	181
			2	21.8	27.9	34.0	124	130	135
			3	33.4	42.8	52.2	144	153	161
			4	45.0	57.7	70.3	165	176	187
			5	56.6	72.5	88.5	185	200	213
FHC-4	10	5-5/16	6	68.2	87.4	106.6	206	223	239
			7	79.8	102.3	124.7	226	246	265
			8	91.4	117.2	142.9	246	269	291
			9	103.1	132.1	161.0	267	292	317
			10	114.7	146.9	179.2	287	316	343

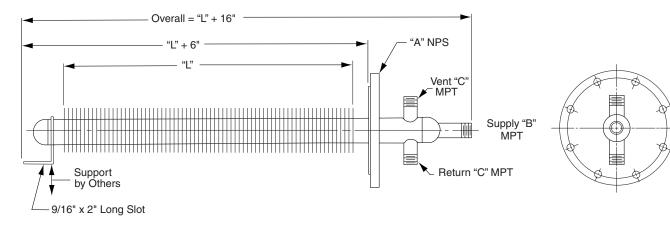
9	179.2	287	316	343	
1	161.0	267	292	317	
2	142.9	246	269	291	

Materials of Construction

Pipes: 1-1/4" NPS Sch. 80 Seamless Steel (1.66" OD x 0.191" Wall) Fins: 0.036" Thick Helically Wound Steel "L" Foot Return Bends: A-234 Long Radius Forged Steel Sch. 80 Mounting Flange: A-105 Forged Steel, 150 lb Raised Face

Mechanical Design: 450 psig, 650°F, Standard Testing Pressure 675 psi

FHS St	ainless S	teel Uni	ts						
Туре	A Flange	B	Nominal Length	Surfa	ce Area	(sq ft)	w	leight (l	b)
	Size (in)	(in)	L (ft)	3 FPI	4 FPI	5 FPI	3 FPI	4 FPI	5 FPI
			2	8.8	11.1	13.4	60	61	62
			3	13.1	16.6	20.1	65	67	69
			4	17.5	22.2	26.9	71	73	75
			5	21.9	27.7	33.6	76	79	82
FHS-2	8	3-3/4	6	26.3	33.3	40.3	82	85	88
			7	30.6	38.8	47.0	87	91	95
			8	35.0	44.4	53.7	92	97	101
			9	39.4	49.9	60.4	98	103	108
			10	43.8	55.5	67.2	103	109	114
			2	17.5	22.2	26.9	100	102	105
			3	26.3	33.3	40.3	111	114	118
			4	35.0	44.4	53.7	122	126	131
			5	43.8	55.5	67.2	132	138	144
FHS-4	10	5-5/16	6	52.5	66.6	80.6	143	150	157
			7	61.3	77.7	94.0	154	162	170
			8	70.0	88.8	107.5	165	174	183
			9	78.8	99.9	120.9	176	186	196
			10	87.6	111.0	134.3	186	198	209


Materials of Construction

Pipes: 1-1/4" NPS Sch. 10, 304L SS (1.66" OD x 0.109" Wall) Fins: 0.020" Thick Helically Wound 304 SS "L" Foot Return Bends: A-403 Long Radius 304L SS Sch. 10 Mounting Flange: A-182 304L SS, 150 Ib Raised Face Mechanical Design: 450 psig, 650°F, Standard Testing Pressure 675 psi

NOTE: Type 316L SS Construction is available.

Flange Mounted Bayonet Type FBC and FBS

Standard Sizes

FBC Car	rbon Stee	l Unit	s							
Туре	A Flange	B (in)	C (in)	Nominal Length	Surfac	e Area	(sq ft)	w	eight (I	lb)
	Size (in)	(111)	(111)	L (ft)	3 FPI	4 FPI	5 FPI	3 FPI	4 PFI	5 FPI
				2	5.8	7.4	9.1	33	34	35
				3	8.7	11.2	13.6	39	41	42
				4	11.6	14.9	18.1	45	47	50
				5	14.5	18.6	22.7	51	54	57
FBC-125	4	3/4	3/4	6	17.4	22.3	27.2	57	60	64
				7	20.3	26.0	31.8	63	67	72
				8	23.2	29.8	36.3	69	74	79
				9	26.1	33.5	40.8	75	80	86
				10	29.0	37.2	45.4	81	87	93
				2	7.9	10.1	12.3	50	52	54
				3	11.8	15.1	18.4	59	62	65
				4	15.7	20.2	24.6	67	71	75
				5	19.7	25.2	30.7	76	81	86
FBC-200	6	1	1	6	23.6	30.2	36.9	85	91	96
				7	27.6	35.3	43.0	94	101	107
				8	31.5	40.3	49.2	102	110	118
				9	35.4	45.4	55.3	111	120	128
				10	39.4	50.4	61.5	120	130	139
				2	9.2	11.8	14.3	60	62	65
				3	13.8	17.7	21.5	72	75	79
				4	18.4	23.5	28.7	84	89	94
				5	23.0	29.4	35.8	97	102	108
FBC-250	6	1-1/4	1	6	27.6	35.3	43.0	109	115	123
				7	32.2	41.2	50.2	121	129	137
				8	36.8	47.1	57.4	133	142	151
				9	41.4	53.0	64.5	145	155	166
				10	46.0	58.9	71.7	158	168	180

FBC-125 Pipes: 1-1/4" NPS Sch. 40 Seamless Steel (1.66" OD x 0.140" Wall) **FBC-200 Pipes:** 2" NPS Sch. 40 Seamless Steel (2.875" OD x 0.154" Wall) **FBC-250 Pipes:** 2" Sch. 40 Seamless Steel (2.875" OD x 0.203" Wall) Fins: 0.036" Thick Helically Wound Steel "L" Foot

Inner Distributing Pipe: Sch. 80A-53F Steel

End Caps: A-234 Forged Steel Sch. 40

Mounting Flange: A-105 Forged Steel, 150 lb Raised Face Mechanical Design: 450 psig, 650°F, Standard Testing Pressure 675 psi

NOTE: Sch. 80 Construction is available.

FBS Stainless Steel Units										
Туре	A Flange Size (in)	B (in)	C (in)	Nominal Length	Surfac	e Area	(sq ft)	w	eight (l	lb)
	312e (111)	(111)	(111)	L (ft)	3 FPI	4 FPI	5 FPI	3 FPI	4 PFI	5 FPI
				2	4.4	5.5	6.7	27	28	29
				3	6.6	8.3	10.1	31	32	33
				4	8.8	11.1	13.4	34	36	37
				5	10.9	13.9	16.8	38	39	41
FBS-125	4	3/4	3/4	6	13.1	16.6	20.1	41	43	45
				7	15.3	19.4	23.5	45	47	50
				8	17.5	22.2	26.9	48	51	54
				9	19.7	25.0	30.2	52	55	58
				10	21.9	27.7	33.6	55	58	62
				2	6.0	7.5	9.1	41	42	43
				3	8.9	11.3	13.6	46	48	49
				4	11.9	15.0	18.2	51	53	55
				5	14.9	18.8	22.7	57	59	61
FBS-200	6	1	1	6	17.9	22.6	27.3	62	64	67
				7	20.8	26.3	31.8	67	70	73
				8	23.8	30.1	36.4	72	76	79
				9	26.8	33.8	40.9	77	81	85
				10	29.8	37.6	45.5	83	87	91
				2	6.9	8.7	10.5	46	47	48
				3	10.4	13.0	15.7	53	54	56
				4	13.8	17.4	21.0	59	61	63
				5	17.3	21.7	26.2	66	69	71
FBS-250	6	1-1/4	1	6	20.7	26.1	31.5	73	76	78
				7	24.2	30.4	36.7	80	83	86
				8	27.6	34.8	42.0	86	90	94
				9	31.1	39.1	47.2	93	97	101
				10	34.5	43.5	52.5	100	105	109

Materials of Construction

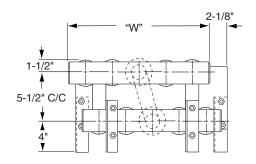
FBS-125 Pipes: 1-1/4" NPS Sch. 10, 304L SS (1.66" OD x 0.109" Wall) **FBS-200 Pipes:** 2" NPS Sch. 10, 304L SS (2.375" OD x 0.109" Wall) **FBS-250 Pipes:** 2-1/2" NPS Sch. 10, 304L SS (2.375" OD x 0.109" Wall)

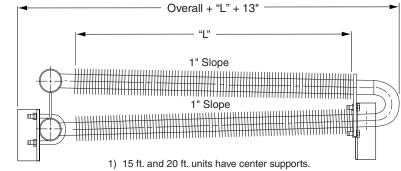
Fins: 0.020" Thick Helically Wound 304 SS "L" Foot

Inner Distributing Pipe: Sch. 10, 304L SS

End Caps: A-403, 304L SS, Sch. 10

Mounting Flange: A-182, 304L SS, 150 lb Raised Face Mechanical Design: 450 psig, 650°F, Standard Testing Pressure 675 psi


NOTE: Type 316L SS Construction is available.


Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

411

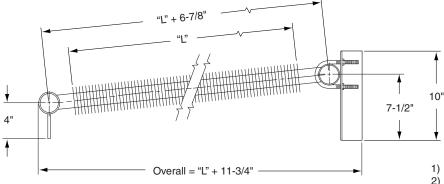
g[•] Base Mounted Hairpin Type BHC and BHS

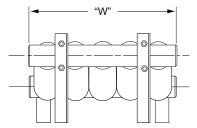
2) Header ends are beveled for on-site butt welding.

Standard Sizes

BHC Carb	on Steel Ur	nits							
Туре	Minimum Manhole	W	Nominal Length	Surfac	e Area	(sq ft)	W	eight (l	b)
	Size (in)	(in)	L (ft)	3 FPI	4 FPI	5 FPI	3 FPI	4 FPI	5 FPI
			5	59	76	93	108	123	138
BHC-4	16	7-1/8	10	118	152	186	198	228	258
DU-4	10	/-1/0	15	178	228	278	293	338	383
			20	237	304	371	384	444	503
			5	89	114	139	158	180	203
BHC-6	18	10.1/4	10	178	228	278	294	339	383
DUC-0	10	10-1/4	15	266	342	418	435	502	569
			20	355	456	557	570	660	749
			5	118	152	186	208	238	268
BHC-8	22	13-3/8	10	237	304	371	389	449	508
DU-0	22	13-3/0	15	355	456	557	576	666	755
			20	473	608	742	757	877	995
			5	148	190	232	258	295	332
BHC-10	24	16-1/2	10	296	380	464	484	559	633
DHG-10	24	10-1/2	15	444	570	696	717	830	941
		F	20	592	760	928	943	1,093	1,241

BHS Stair	less Steel	Units								
Туре	Minimum Manhole	W	Nominal Length	Surfac	e Area	(sq ft)	Weight (lb)			
	Size (in)	(in)	L (ft)	3 FPI	4 FPI	5 FPI	3 FPI	4 FPI	5 FP	
			5	44	55	67	70	76	81	
BHS-4	16	7 1/0	10	88	111	134	124	135	147	
рпә-4	10	7-1/8	15	131	166	201	182	199	217	
			20	175	222	269	236	256	282	
		10-1/4	5	66	83	101	101	110	119	
BHS-6	18		10	131	166	201	182	199	217	
DU9-0	10	10-1/4	15	197	250	302	268	294	320	
			20	263	333	403	349	4 FPI 5 F 76 8' 135 14 199 21 256 28 110 11 199 21 294 32 384 41 144 15 264 28 389 42 508 55 179 19 328 35 484 52	418	
			5	88	111	134	133	144	156	
BHS-10	24	16-1/2	10	175	222	269	240	264	287	
рпо-10	24	10-1/2	15	263	333	403	354	389	424	
			20	350	444	537	462	508	555	
			5	109	139	168	164	179	193	
BHS-8	22	10.0/0	10	219	277	336	299	328	357	
	22	13-3/8	15	328	416	504	440	484	527	
			20	438	555	672	575	633	691	


Materials of Construction


Pipes: 1-1/4" NPS Sch. 10, 304L SS (1.66" OD x 0.109" Wall) Fins: 0.020" Thick Helically Wound 304 SS "L" Foot Headers: 2" NPS Sch. 40, 304L SS (2.375" OD x 0.154" Wall) Return Bends: A-403 Long Radius 304L SS Sch. 10 Mechanical Design: 450 psig, 650°F, Standard Testing Pressure 675 psi NOTE: Type 316L SS Construction is available.

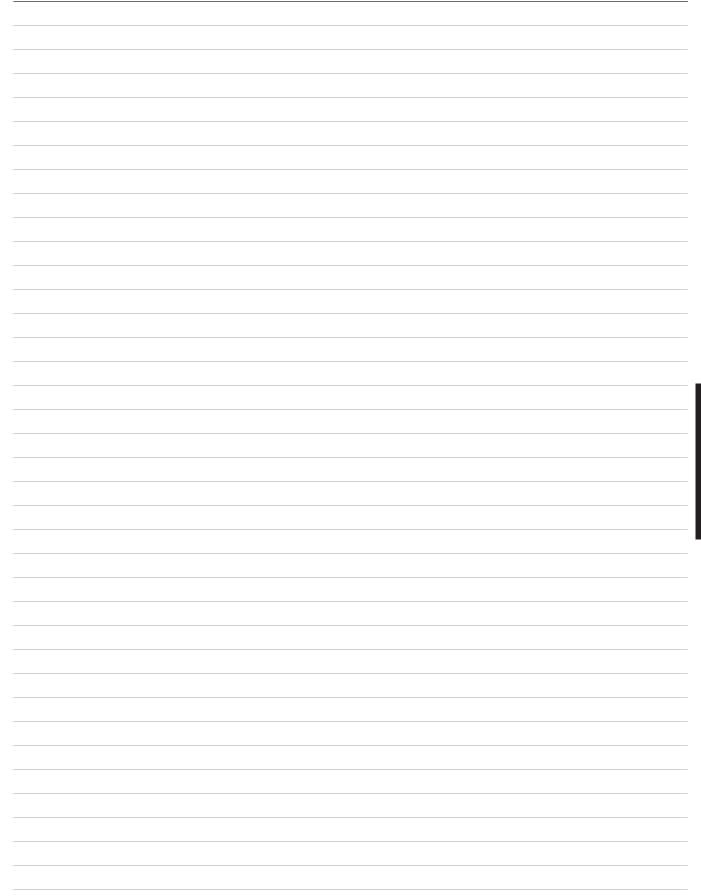
Pipes: 1-1/4" NPS Sch. 40 Seamless Steel (1.66" OD x 0.140" Wall) Fins: 0.036" Thick Helically Wound Steel "L" Foot Headers: 2" NPS Sch. 40 Seamless Steel (2.375" OD x 0.154" Wall) Return Bends: A-234 Long Radius Forged Steel Sch. 40 Mechanical Design: 450 psig, 650°F, Standard Testing Pressure 675 psi

NOTE: Sch. 80 Construction is available.

1) 15 ft and 20 ft units have center supports. 2) Header ends are beveled for on-site butt welding.

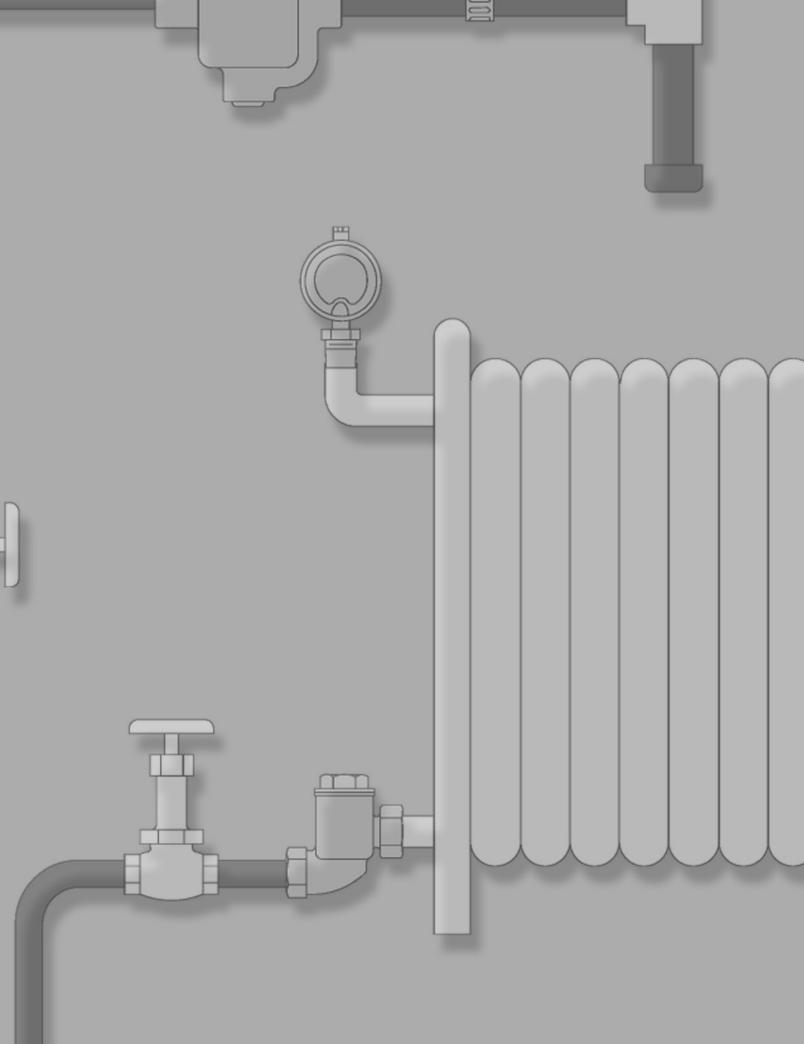
Standard Sizes

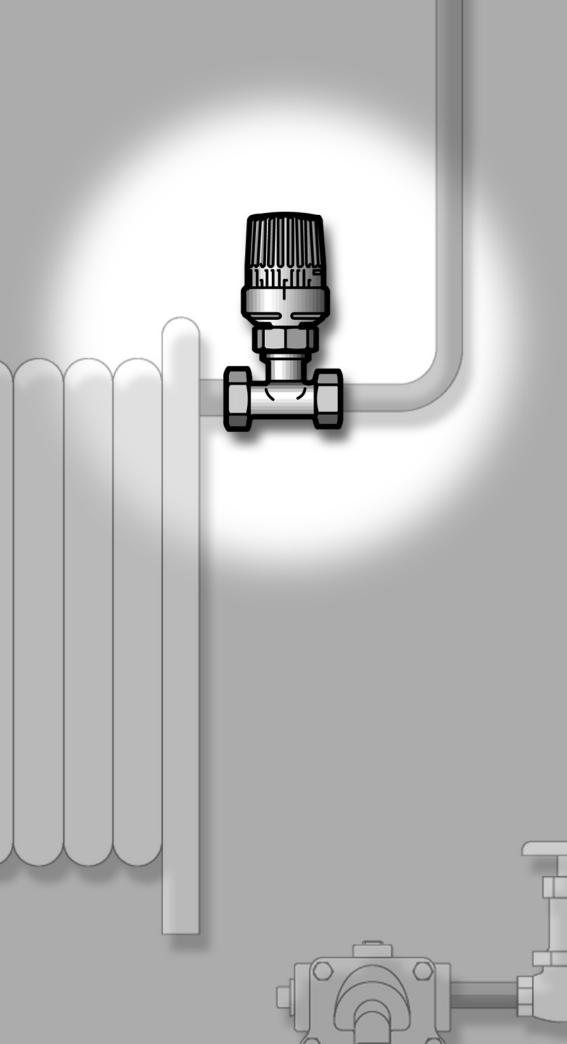
BD Carbo	n Steel Uni	ts							
Туре	Minimum Manhole	W	Nominal Length	Surfac	e Area	(sq ft)	w	eight (b)
	Size (in)	(in)	L (ft)	3 FPI	4 FPI	5 FPI	3 FPI	4 FPI	5 FPI
			5	30	38	47	60	68	75
BD-2	14	7-1/8	10	59	76	93	104	121	135
DD-2	14	1-1/0	15	89	114	140	156	179	201
			20	118	152	186	201	231	261
			5	45	57	70	86	97	109
BD-3	16	10-1/4	10	89	114	139	154	177	199
DD-3	10	10-1/4	15	134	171	209	227	261	294
			20	178	228	278	295	340	384
			5	59	76	93	112	127	142
BD-4	20	13-3/8	10	118	152	186	203	233	262
DD-4	20	13-3/0	15	177	228	279	298	343	388
			20	237	304	371	389	449	508
			5	74	95	116	138	157	175
BD-5	22	16-1/2	10	148	190	232	251	288	325
5-00	22	10-1/2	15	222	285	348	369	425	481
			20	296	380	464	482	557	631


Materials of Construction Pipes: 1-1/4" NPS Sch. 40 Seamless Steel (1.66" OD x 0.140" Wall) Fins: 0.036" Thick Helically Wound Steel "L" Foot Headers: 2" NPS Sch. 40 Seamless Steel (2.375" OD x 0.154" Wall) Mechanical Design: 450 psig, 650°F, Standard Testing Prsesure 675 psi NOTE: Sch. 80 Construction is available. These units are available only in Carbon Steel.

Armstrong[®] Tank Heater Selection Work Sheet

Tauli Tura				
Tank Type				
Tank Material			foot	
Dimensions Insulated?	If yoo how t	hick?	ieel	
	_ if yes, now t	IICK ?	inches	
Open Top? Tank Level (% full) or Flu	id Volumo			
Design Ambient Air Temp			°F	
Design Ambient Air Temp Design Wind Velocity (if c	utside and not	insulated)		
			mpn	
eam Information				
Steam Pressure	_ psig			
Saturated?	_ If not, what t	emperature?	°F	
id Information				
Type of Fluid				
Duran antian (mature suring of f				
1. Specific Gravity or Density	at		°F	
or Density or Density	lb/cu ft at			
or Density 2. Specific Heat	Btu/lb/°F at		' °F	
3. Viscosity (at least one			'	
units				
	- at		°F	
	 at		『	
			'	
ating Requirements				
A. Through Load B. Heat-Up Load from		USGPM at	°F	not applicable
B. Heat-Up Load from	°F to	°F in	hours	not applicable
C. Maintenance Load to I	Hold	°F		
D. Total Heat Load (if kno	own)	Btu/hr		
,	-			
nk Heater Requirements				
1. Materials of Construction	on			
A. Carbon Steel				
B. Type 304L Stainless				
C. Type 316L Stainless				
2. Type of Unit				
A. Flange Mounted		(preference? Ha	airpin	Bayonet
B. Base Mounted		(preference? Ha	airpin	Direct
If flange mounted, is	s std. flange siz	e OK? If	not, specify size	e
Maximum tank opening	i to incort hoate	ar into the tank.	inches	

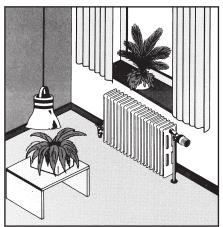

Other Information



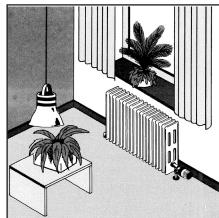
Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

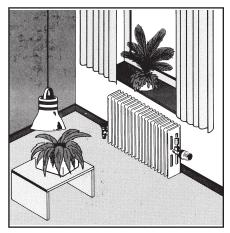
Heating and Cooling Coils

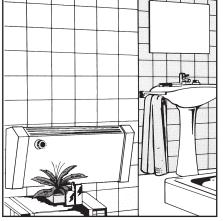
Radiator Products


				Max.				Max.		Connecti	on Cino			
Illustration	Туре	Body Pattern	Conn. Type	Allow. Press. psig	TMA °F	Body Material	Model	Oper. Press. psig	1/8"	1/4"	1/2"	3/4"	Located on Page	
	SV-12 Steam Radiator System Air Vents	Straight Angle (1/8" only)	NPT	15	250	Nickel Plated Brass	SV-12	15	•	•	•	•	422	
	AV-11 , AV-13 Hydronic			200 Hydronic			AV-11	50	•					
	System Air Vents	Straight	NPT	350 Hydronic	210	Brass	AV-13	150			• Female	• Male	423	
											Female	IVIAIE		
Illustration	Туре	Body	Conn.	Max. Allow.	TMA	Body	Model	Max. O	per. Press.	Co	nnection S	ize	Located	
וועצוומווטוו	Type	Pattern	Туре	Press. psig	°F	Material	MOUCI	I	psig	1/2"	3/4"	1"	on Page	
	Series TS-2/TS-3 Radiator	Straight	Threaded	50	300	Bronze	TS-2		50	•	•		424	
	Trap Capacities to 1,600 lb/hr	Angle	Threaded	65	315	DIGHZG	TS-3		65	•	•	•	727	
Ulustration	Ture	Body	Conn.	Max. Allow.	ТМА	Body	Madal	Max. Oper.		Connecti	on Size		Located	
Illustration	Туре	Pattern	Туре	Press. psig	°F	Material	Model	Press. psig	1/2"	3/4"	1"	1-1/4"	on Page	
	RV-4 Radiator Valves	Straight Angle Reverse Angle	NPT Solder (1/2 & 3/4)	15 Steam 150 Water	250	Nickel Plated Brass	RV-4	15 Steam 150 Water	•	•	•	•	420	
	LV-4, WV-4, MV-3, LV-4W, EV-4 Radiator Operators Remote Sensors Available	_			250	Plastic (Luron)	LV-4 WV-4 MV-3 LV-4W EV-4	- u		lsed with a	421			

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

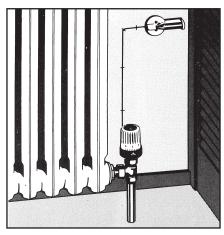

418

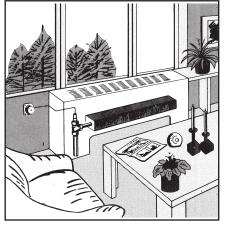

Typical Radiator Valve Applications

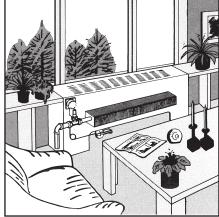

LV-4 with RV-4 reversed angle body, on free standing two-pipe steam radiator.

LV-4 with RV-4 reversed angle body on forced hot water radiator.

LV-4 with RV-4 one-pipe steam body on free standing radiator.

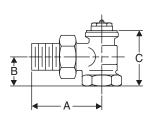

Convector with accessible thermostat. A LV-4 is shown, and in some cases a remote sensor is available.


LV-4 with remote sensor. Valve is covered by a curtain; remote sensor has been mounted away from the curtain.

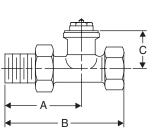

LV-4 with remote sensor. The sill creates a heat pocket; in this case a thermostat with remote sensor is necessay.

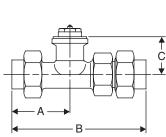
LV-4 remote sensor with RV-4 angle body. Vertically installed thermostats require a remote sensor.

LV-4W with a RV-4 angle body. An inaccessible radiator valve requiring a remote control and adjuster unit.

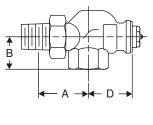


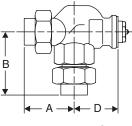
LV-4W remote sensor with RV-4 straight body to insulate sensor from heat influence or cover, remote sensor is necessary.


Radiator Products

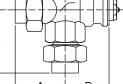


b


RV-4 Angle



RV-4 Angle Solder


RV-4 Straight

RV-4 Straight Solder

RV-4 Reversed Angle

RV-4 Reversed Angle Solder

For Hot Water and Low Pressure Steam

Armstrong's thermostatic radiator valves are offered in straight, angle and reversed angle patterns. Thermostatic operators provide accurate and automatic control of space temperature. They are ideal for hot water and low pressure steam heated convectors, radiators, thermostatically controlled hydronic or low pressure heat exchangers. Five styles of thermostatic operators are available with liquid, liquid remote or low density wax sensors.

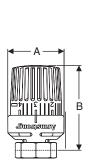
For a fully detailed certified drawing, refer to: RV-4 Angle CDY #1049 **RV-4 Straight** CDY #1050 RV-4 Reversed Angle CDY #1051

Physical Data	-Valve	Bodi	es																•		•	
Pattern				An	gle							Stra	aight				Reversed Angle					
Pipe Conn.	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
FPT x MPT	1/2	15	3/4	20	1	25	1-1/4	32	1/2	15	3/4	20	1	25	1-1/4	32	1/2	15	3/4	20	1	25
"A"	2-5/16	59	2-5/8	66	2-15/16	59	3-7/16	65	2-15/16	59	2-1/2	64	3-1/8	73	3-9/16	90	2-3/8	60	2-5/8	66	3	76
"В"	1	25	1-1/8	28	1-5/16	33	1-9/16	39	3-3/4	95	4-3/16	106	4-15/16	78	6	150	1-1/16	27	1-3/4	44	1-5/16	33
"C"	1-15/16	49	2-1/16	52	2-3/8	60	2-3/4	70	1-1/8	28	1-1/8	28	1-1/8	28	1-3/8	35	-	-	-	-	-	-
"D"	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1-9/16	40	1-3/8	35	1-1/2	38
Weight, Ib (kg)		3/4 (0	.34)		1-1/2 (0	.68)	1-3/4 ().79)	3/4 (0.3	34)	1 (0	45)	1-1/2 (0	.68)	1-3/4 (0	.79)	1 (0.4	5)	1-1/4 (0.56)	1-1/2 (D.68)

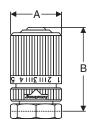
Physical D	Data—	Solde	er Valv	ve Bo	dies								
Pattern		An	gle			Stra	night		Reversed Angle				
Pipe Connection	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	
Solder	1/2	15	3/4	20	1/2	15	3/4	20	1/2	15	3/4	20	
"A"	1-7/8	47	2-1/4	57	1-7/8	47	2-5/32	55	1-3/4	44	2-1/4	57	
"B"	2-5/32	55	2-1/2	64	4-7/16	113	5-1/4	133	2-3/16	56	3-1/8	79	
"C"	3	76	3-1/2	89	1-1/4	32	1-5/32	29	-	-	-	-	
"D"	-	-	-	-	-	-	-	-	1-1/2	38	1-1/2	38	
Weight, Ib (kg)	3/4 (0	3/4 (0.34) 1(0.45)		3/4 (0.34) 1 (0.45)				1-1/4 (0.56)	1-1/3 (0.60)		

Pressure/Temperatures		
Model	"A" Insert (Standard On All Valves)	"S" Insert (Provides Longer Life on Steam Service)
Maximum Steam, psi (bar)		15 (1)
Maximum Temp. °F (°C)		250 (121)
Max. Diff.—Water, psi (bar)		15 (1)
Max. Static Pressure, psi (bar)		150 (10)

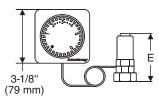
NOTE: Normally closed insert available.

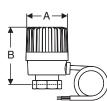

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

420

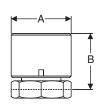

Thermostatic Operators

C

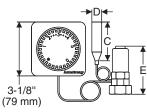



LV-4 Operator Liquid Sensor

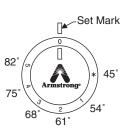
WV-4 Operator Low Density Wax Sensor



LV-4W Operator (Wall Mount)



EV-4 Electric Operator 24 VAC N.C. or N.O.


LV-4 Operator Remote Sensor

MV-3 Operator*

LV-4W w/Remote Sensor

Thermostatic Radiator Valve In-Service Repair Tool for Valve Repair Without Interrupting Operation

Failures of thermostatic radiator valves are frequently caused by solid matter suspended in the heating medium, such as weld or solder beads, dirt particles, etc. This results in the loss of the shut-off function of the valve through damage to the sealing surface of the valve and seat.

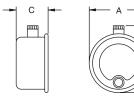
The use of an Armstrong In-Service Repair Tool provides a quick and easy way to remove the valve insert from an Armstrong radiator valve. Valve repair can then be accomplished without draining the heating system or interrupting its operation.

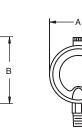
The LV-4 can be easily adjusted to a comfortable temperature. The temperature to scale relationship is shown to the left. The lowest setting provides freeze protection at approximately 45°F with a high setting of 82°F. Temperature settings on all LV-4 Operators may be limited or locked.

For a fully detailed certified drawing, refer	to:
LV-4 Operator Liquid Sensor	CDY #1053
LV-4 Operator Remote Sensor	CDY #1054
MV-3 Operator	CDY #1058
LV-4W Operator (Wall Mount)	CDY #1055
LV-4W w/Remote Sensor	CDY #1056
EV-4 Electric Operator	CDY #1057
WV-4 Operator Low Density Wax Sensor	CDY #1062

Specifications—Valv	Specifications—Valve Bodies and Operators											
Name of Part	Material											
Valve Body	Brass (nickel plated)											
Main Valve	"A" insert - Brass	"S" insert										
Main Valve Seat	"A" insert - EPDM	chrome nickel plated										
Operator Body	L	uron										
0-rings	EPDM											

Physical Data—Thermosta	tic Opera	tors												
Туре	LV-4 Operator w/Liquid Sensor		LV-4 Operator w/Liquid Remote Sensor		WV-4 Operator w/Low Density Wax Sensor		IVIV		LV-4W Operator (Wall Mount)		LV-4W Operator w/Remote Sensor		EV-4 Electric Operator	
	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
"A"	2-1/8	54	2-1/8	54	1-7/16	37	1-1/2	38	-	-	-	-	2	50
"В"	3-5/16	84	3-5/16	84	2-9/16	65	1-1/2	38	-	-	-	-	2-3/4	70
"C"	-	-	2-7/8	73	-	_	_	-	-	_	2-7/8	28	_	-
"D"	-	-	3/4	20	-	-	-	-	-	-	3/4	20	-	-
"E"	-	-	_	-	-	_	_	-	3	76	3	76	_	-
Remote Operator	-	-	-	-	-	-	-	-	3-1/8 x 3-1/8	79 x 79	3-1/8 x 3-1/8	79 x 79	_	-
Capillary Length, ft (m)	-		6-1/2 or (2 or		-	_	-		_		6-1/2 or 16-1/2	2 (2 or 5)	_	
Weight, Ib (kg)	1/3 (0	.15)	1/2 or (0.23 or	- /	1/4	(0.11)	1/8 (0).05)	3/4 (0.3	4)	1 or 1-1/4 (0.45	5 or 0.57)	3/4 (0).34)


*For on-off service—not thermostatic.


Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Radiator Products

421


Armstrong[®] SV-12 Steam Radiator Air Vent

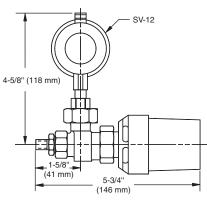
SV-12 Angle Air Vent

SV-12 Straight Air Vent

SV-12 Straight Main Air Vent

Materials						
Name of Part	Material					
Body	Nickel plated brass					
Float	Polypropylene					
Valve Seat	Brass					
Bimetal Thermostatic Element	Stainless steel					

For Steam Service


A vent port size for every room location with the largest size for the coldest rooms and the smallest size for the "too hot" rooms. SV-12 air vents are easy to install on any steam radiator.

For a fully detailed certified drawing, refer to CDY #1042.

Pattern	Angle Co	nnection	Straight C	onnection	Straight Mai	Straight Main Connection		
Ding Connection Cize	in	mm	in	mm	in	mm		
Pipe Connection Size	1/8	3	1/8, 1/4	3, 6	1/2, 3/4	15, 20		
"A"	2-3/16	56	2-3/16	56	2-3/16	56		
"В"	2-5/16	59	3-1/4	83	3-1/2	89		
"С"	1-3/16	30	1-3/16	30	1-3/16	30		
Max. Operating Pressure, psi (bar)			15 (1)					
Vent Port Designation and Port Size	Each a	$4 = .040" \qquad 6 = .0935"$ $5 = .070" \qquad C = .1285"$ $D = .1850"$ Each air vent is provided with all five of the above vent ports						

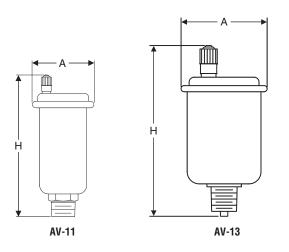
RV-4 One Pipe Steam Radiator Valve

RV-4 One Pipe Steam Radiator Valve

For Steam Service

The Armstrong RV-4 One Pipe Radiator Valve is a state-of-theart thermostatic radiator valve for low pressure steam service. The valve provides accurate and automatic control of space temperature in individual rooms through automatic air venting.

For a fully detailed certified drawing, refer to CDY #1052.


Specifications	•						
Name of Part	Ma	aterial					
Valve Body	Brass (nickel plated)						
Main Valve	"A" insert - Brass "S" insert						
Main Valve Seat	"A" insert - EPDM	chrome nickel plated					
Operator Body	Luron						
O-rings	EPDM						

Pressure/Temperatures									
Model	"A" Insert (Standard On All Valves)	"S" Insert (Provides Longer Life on Steam Service)							
Maximum Steam, psi (bar)		15 (1)							
Maximum Temp. °F (°C)		250 (121)							
Max. Diff.—Water, psi (bar)		15 (1)							
Max. Static Pressure, psi (bar)		150 (10)							

NOTE: Normally closed insert available.

AV-11/AV-13 Air Vent

For Hot or Cold Water and Non-viscous Liquids

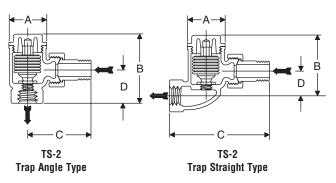
Air vent models AV-11 and AV-13 are compact float-type valves for the removal of air and other gases from hydronic heating and cooling systems, liquid chilling operations and other light liquid services.

For a fully detailed certified drawing, refer to: AV-11 CDY #1047 AV-13 CDY #1048

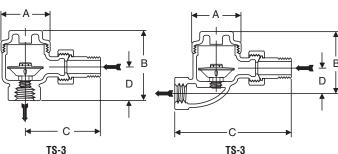
Specification	ons							
Model	Application	Workir	ig Pressure	Maximum Te	mperature	Connection	Hydraulic 1	fest Body
Wouer	Application	psi	bar	°F	°C		psig	bar
AV-11	Hot or Cold Water	1 - 50	0.06 - 3.4	210	99	NPT Screwed	200	14
AV-13	HOL OF COID WALEF	1 - 150	0.06 - 10.3	210	99	INPT Scieweu	350	24

Capaciti	es						
	AV	·11			AV	-13	
	۱P	Capa	cities	L	∆P	Capa	cities
psi	bar	cfm	m³/hr	psi	bar	cfm	m³/hr
3.5	0.24	0.5	0.84	16	1.1	1	1.7
10	0.69	1.0	1.7	48	3.3	2	3.4
24	1.7	1.5	2.5	84	5.8	3	5.1
35	2.4	1.9	3.2	120	8.3	4	6.8
50	3.4	2.0	3.4	150	10	4.9	8.3

Materials		
Valve	Float	Disc
Brass	Polypropylene	Nitrile


Physical Data Model AV-11 AV-13									
	in	mm	in	mm					
Connection Size	1/8 v	3	1/2 Female 3/4 Male	15 Female 20 Male					
"A"	1-3/4	44	2-1/8	54					
"H"	3-3/8	86	4-5/8	118					
Weight, Ib (kg)	1/4 (0.11)	1/2 (0.23)						

5.1	П	3-3/0	00	4-0/0	110	
6.8	Weight, Ib (kg)	1/4 (0.11)	1/2 (0.23)	
8.3						


TS-2/TS-3 Radiator Traps

9[®] For Pressures to 65 psig (4.5 bar)...Capacities to 1,600 lb/hr (726/kg)

Armstrong Series TS radiator traps are offered in both angle and straight patterns. The TS-2 has a balanced pressure thermostatic element with a high quality multipleconvolution bellows. It's ideal for draining equipment such as steam radiators and convectors, small heat exchangers, unit heaters and steam air vents. The TS-2 comes with a strong cast bronze body and a stainless seat. The valve and seat are renewable in-line. The TS-3 is a heavy duty wafer type trap for the drainage of all types of steam radiators and convectors. Its wafer design is well suited to systems prone to water hammer, which may damage conventional bellows type units. The TS-3 is repairable in-line and has an all-stainless steel wafer element.

For a	fully	detailed	certified	drawing,	refer to:
TS-2	CDY	#1045			
TS-3	CDY	#1046			

Trap Angle Type

TS-3 Trap Straight Type

Model				Т	3-2				TS-3											
Pattern		Ang	le			Stra	ight				An	gle			Straight					
Dina Connections	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Pipe Connections	1/2	15	3/4	20	1/2	15	3/4	20	1/2	15	3/4	20	1	25	1/2	15	3/4	20	1	25
"A" Diameter	1-5/8	41	1-5/8	41	1-5/8	41	1-5/8	41	2	50	2	50	2-3/8	86	2	50	2	50	2-3/8	86
"B" Height	2-15/16	75	3	76	2-11/16	68	2-7/8	73	2-7/8	73	3-5/8	92	3-7/8	98	2-5/8	61	3-3/8	86	3-1/2	89
"C"	2-9/16	65	2-7/8	73	4	102	4-1/2	114	3-1/8	79	3-1/2	89	4-1/8	105	4-7/8	124	5-1/4	133	6-1/2	165
"D"	1-3/8	35	1-5/8	41	1-1/8	28	1-5/16	33	1-3/8	35	1-5/8	41	2	50	1-1/8	28	1-3/8	35	1-5/8	41
Weight, Ib (kg)	1-1/2 (().68)	1-3/4	(0.79)	1-1/2 (().68)	2 (0	.91)	1-1/2 (0.68) 2 (0.91) 2-1/2 (1.1) 1-1/2 (0.68) 2-1/4 (1) 3 (1.4)						.4)					
Maximum Allowable Pressure (Vessel Design)	e Pressure 50 psig @ 300°F 65 psig @ 315°F (3.4 bar @ 149°C) (4.5 bar @ 157°C)													-						
Pressure, psi (bar)	50 (3.4)						65 (4.5)													
Vacuum Ratings				25" N	lercury		10" Mercury													

Materials		
Name of Part	TS-2	TS-3
Сар	Br	onze, ASTM B-62
Body	Br	onze, ASTM B-62
Union Nipple	Br	ass, ASTM B-584
Valve	Brass	Stainless Steel
Valve Seat	Stainless steel	Stainless steel
Element	Phosphor-bronze bellows	T-316 SS Wafer with T-304 SS housing

Capacities	5						
Orifice Size, in		5/16		1/8			
Differential Pressure		Model No.					
		TS	5-2	TS-3			
psi	bar	lb/hr	kg/hr	lb/hr	kg/hr		
1	0.07	275	125	160	73		
3	0.21	395	179	280	127		
5	0.34	475	215	360	162		
10	0.69	630	286	515	233		
20	1.4	1,000	454	625	283		
30	2.0	1,200	544	720	327		
45	3.1	1,475	669	825	374		
50	3.4	1,600	726	870	395		
65	4.5	_	_	960	435		

Capacities given are continuous discharge capacities in lb/hr (kg/hr) of hot condensate at pressure differential indicated.

T-Wafer Radiator Trap Replacement Capsule

For Steam Service

The T-Wafer capsule is a compact, easy to install, welded wafer element. The capsule is designed so that it can be easily adapted to almost any of the popular radiator traps currently in use.

For a fully detailed certified drawing, refer to CDY #1077.

T-Wafer Capsule

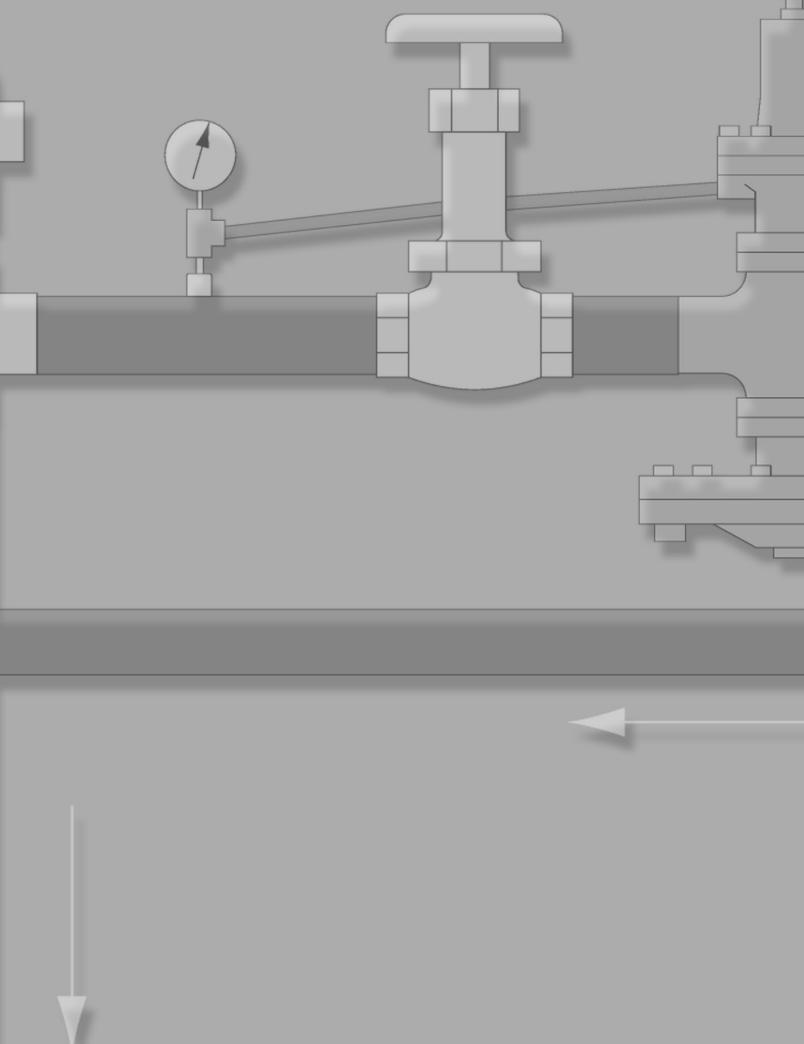
Specifications and Materials							
Application	Max. Oper.	Max. Oper.	Materials				
	psig (bar)	Temp. °F (°C)	Body	Seat	Wafer		
Steam	65 (4)	312 (156)	T-304 SS	T-316 SS	T-316 SS		

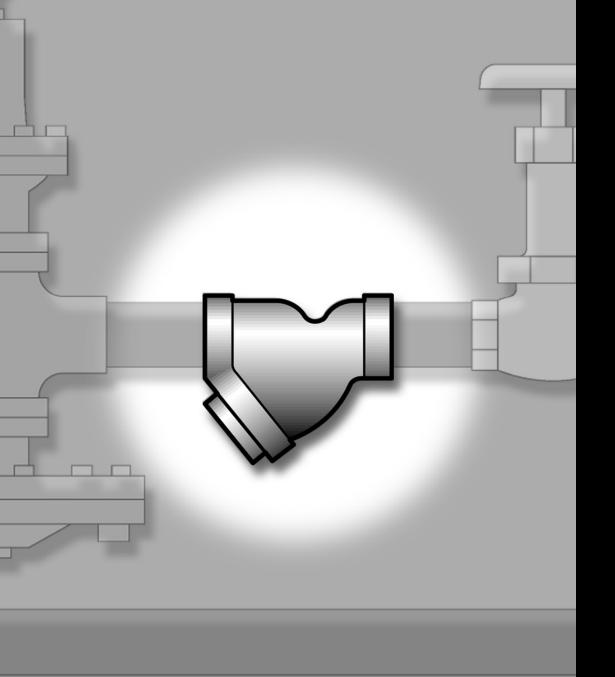
TRONC	ARMS TRONG
O/6-75	BIT 2023600
STRONG OIG-755	ARMS TRO

Physical Data							
L		*H		H ₁		K	
in	mm	in	mm	in	mm	in	mm
1-1/2	38	1-3/16	30	3/4	20	1/2 Hex	15

*When using adapter extension or using extra tall adapter, add 1/2" (15 mm).

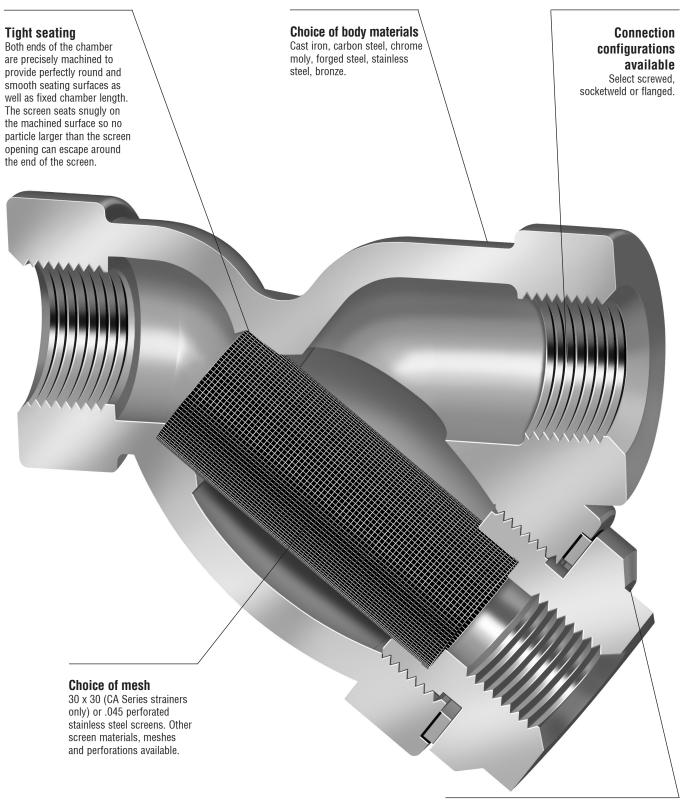
For a complete listing of popular models adaptable to the T-Wafer, contact your Armstrong Representative.


Specify the following when ordering T-Wafers Trap Manufacturer — Trap Model Number — Trap Connection Size — Trap Pattern (on some models)


Armstrong[®] T-Wafer Radiator Trap Replacement Capsule

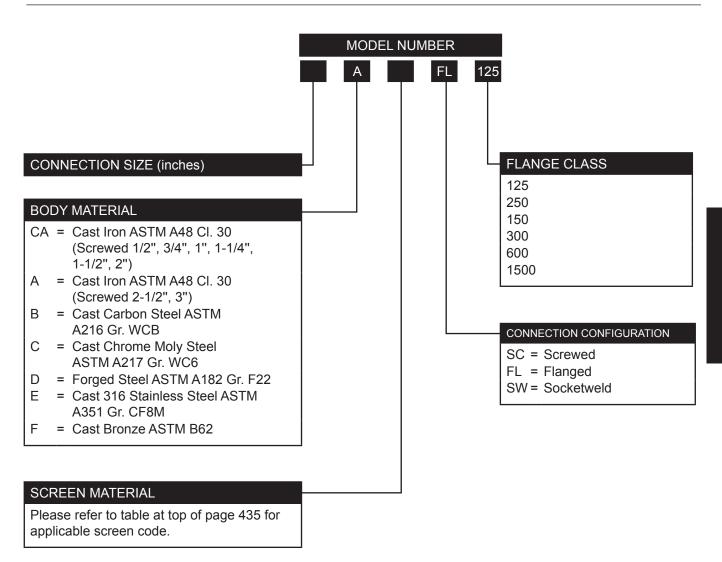
Trap Manufacturer	the T-Wafer	Trap Connection	Armstrong Bart No	Notes	
וומף ואמווטומנוטרפר	Trap Model 122		Armstrong Part No.	NULES	
-		1/2"	B7413		
Barnes & Jones	3045		D7440	Integral Seat	
-	6		B7418		
	134	3/4"	B7437		
	TH2A		B7412	Removable Seat	
	1E	- 1/2"	B7430		
Dunham Bush	1E		B7415		
	2E	3/4"	B7414	Integral Seat	
	V1B		B7415		
	17C	1/2"	B7416		
loffman	8		B7432		
loffman	8C	0/4	B7416		
-	9	- 3/4"	B7432		
	1G	1/2"	B7409		
llinois	3G		B7431		
	2-7	- 3/4"	B7411		
-	1		B7409	Removable Seat	
Marsh -	2	-		nomovable ocar	
ł	1N	1/2"	B7427		
	30	- 1/2	B7409		
Nonash-Younker					
	34		B7417		
-	E	1/2" & 3/4"	B7409		
Sarco	Н				
	Н	1"	B7428		
	S65	1/2" & 3/4"	B7409	Trap Rated @ 65 psi	
_	B1			Removable Seat/Non-vertical	
_	B1		B7424	Integral Seat/Vertical Config.	
	B1	1/2"	B7423	Removable Seat/Vertical Config.	
Trane	B1		B7426	Integral Seat/Non-vertical	
-	B2	-	B7415	Integral Seat	
-	B3	1	B7412	Removable Seat	
-	B3	- 3/4"	B7436	Integral Seat	
	02H & 02V		B7430		
-	12H5	1/2"			
-	22H5		B7419 B7411		
-					
-	502	-			
-	502V-1				
	503	3/4"			
	512, 512H & 512G	1/2"	4		
	513	3/4"			
_	522H	1/2"	B7419 		
_	522HB				
	524HB			Removable Seat	
	533	- 3/4"			
	5993	3/4			
Ī	702	1 100			
1	702V-1	- 1/2"			
Varren Webster	703	3/4"			
	712				
	712HB	- 1/2"	B7419		
ł	713		B7419 B7411		
	713HB		D/411		
-		1/2"	- B7419		
	722HB				
	724AH & 724HB	- 1"			
	734				
	780	3/8"	B7411	High Press. Heavy Load Trap	
	781	- 1/2"	B7428	Removable Seat	
	782				
	783	3/4"			
Ī	784	1"			
Ī	902	1/01	B7425		
1	902V	1/2"	B7411		
	733H	3/4"	B7419	Heavy Load Trap	

NOTE: This is not a complete listing of adaptable traps—For a complete listing, contact your Armstrong Representative. When ordering, please specify: 1. Trap Manufacturer 2. Trap Model Number 3. Trap Connection Size 4. Trap Pattern (on some models)



Strainers

Easy-in, easy-out screwed screen retainers Straight threads mean less torque is required to obtain a tight seal with proper gasket compression, and less torque is required to remove the retainer. The danger of "freezing in" is considerably less than with hard-to-break tapered pipe threads.


Design Advantages

No-Leak, No-Crush Screen Chambers are assured by precise machining of both ends of the chamber to provide perfectly round and smooth seating surfaces as well as fixed chamber length. The screen seats snugly on the machined surface so no particle larger than the screen opening can escape around the end of the screen.

Easy-In, Easy-Out Screwed Screen Retainers have straight threads. Less torque is required to obtain a tight seal with proper gasket compression. Less torque is required to remove the retainer. The danger of "freezing in" is considerably less than with hard-to-break tapered pipe threads.

Off-Center Blowdown Connections for 2-1/2" and 3" size strainers. The off-center drain permits nearly complete removal of liquid and dirt when blowing down the strainer. And less liquid spills when removing the screen retainer.

How To Order

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Strainers

Armstrong[®] Strainers ID Charts

111	Madel	Connection Of	Compatibut T	Dada Material	Pressure Tempe	erature Ratings	Located
Illustration	Model	Connection Size	Connection Type	Body Material	Steam Non-shock	Cold Non-shock	on Page
	CA	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	Screwed		250 psig @ 406°F	400 psig @ 150°F	436
	A	2-1/2", 3"	Sciewed	Cast Iron ASTM-A48	200 psig @ 400 F	400 psig @ 150 F	436
	A	2"	125 Flanged	Class 30	125 psig @ 353°F	175 psig @ 150°F	437
	A	2-1/2" - 10" 2"					437 437
	A A	2-1/2" - 8"	250 Flanged		250 psig @ 400°F	400 psig @ 150°F	437
	В	1/2", 3/4", 1"	Screwed & Socketweld 900 lb		1,635 psig @ 609°F	2,220 psig @ 100°F	438
	В	1-1/4", 1-1/2", 2", 3"	Screwed & Socketweld 600 lb		1,135 psig @ 562°F	1,480 psig @ 100°F	438
	В	1/2", 3/4", 1"					439
	В	1-1/4", 1-1/2", 2", 3"	Class 150 Flanged		205 psig @ 390°F	285 psig @ 100°F	439
	В	4", 6"					439
	В	1/2", 3/4", 1"		Cast Carbon Steel ASTM-A216 Gr. WCB			439
	В	1-1/4", 1-1/2", 2", 3"	Class 300 Flanged		605 psig @ 490°F	740 psig @ 100°F	439
	В	4", 6"					439
	В	1/2", 3/4", 1"	_				439
	В	1-1/4", 1-1/2", 2", 3"	Class 600 Flanged		1,135 psig @ 562°F	1,480 psig @ 100°F	439
	В	4"					439
	С	1/2", 3/4", 1"	Screwed &		2,090 psig @ 643°F	3,000 psig @ 100°F	440
	С	1-1/4", 1-1/2", 2"	Socketweld 1,500 lb	Cast Chrome Moly Steel	2,515 psig@670°F	3,600psig@100°F	440
$\left\ \frac{1}{1} - \frac{1}{1} \right\ $	С	1/2", 3/4", 1"		ASTM-A217 Gr. WC6	2,090 psig @ 643°F	3,000 psig @ 100°F	440
	С	1-1/4", 1-1/2", 2"	Class 1,500 Flanged		2,515psig@670°F	3,600psig@100°F	440
	D	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	Socketweld 2,500 lb	Forged Steel ASTM-A182 Gr. F22	2,500 psig @ 1,025°F	6,000 psig @ 100°F	441

Strainers ID Charts

Illustration	Model	Connection Size	Connection Tune	Dedy Metavial	Pressure Temp	erature Ratings	Located
Illustration	wouer	Connection Size	Connection Type	Body Material	Steam Non-shock	Cold Non-shock	on Page
	E	1/2", 3/4", 1"	Screwed & Socketweld 1,500 lb		2,090 psig @ 643°F	3,000 psig @ 100°F	442
	E	1-1/4", 1-1/2", 2", 3"	Screwed & Socketweld 600 lb		935 psig @ 538°F	1,140 psig @ 100°F	442
	E	1/2", 3/4", 1"					443
	E	1-1/2", 2", 3"	Class 150 Flanged		200 psig @ 386°F	275 psig @ 100°F	443
	E	4", 6"		Cast Stainless Steel ASTM-A351 Gr. CF8M			443
	Е	1/2", 3/4", 1"					443
	E	1-1/2", 2", 3"	Class 300 Flanged		495 psig @ 467°F	720 psig @ 100°F	443
	Е	4", 6"					443
	E	1/2", 3/4", 1"					443
	E	1-1/2", 2", 3"	Class 600 Flanged		935 psig @ 540°F	1,440 psig @ 100°F	443
	E	4"					443
	F	1/2", 3/4", 1", 1-1/4"					444
	F	1-1/2", 2"	Screwed 300 lb	Cast Bronze ASTM-B62	300 psig @ 422°F	500 psig @ 150°F	444

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

433

Armstrong®	Notes

Coroon Cr	acification	Particle	Back-Up Screen	Materials							
Screen Sp	ecification	Retention, Inches	Required	304 SS	Monel	Brass	316 SS				
	1/64"	0.016	3" - 10"	Code 10	Code 18						
	1/32"	0.031	None	Code 11	Code 19	_	Code 31				
	.045 (3/64")	0.045	None	Code 1	Code 3	Code 4	Code 7				
Perforated	1/16"	0.062	None	Code 12	—		Code 32				
	1/8"	0.125	None	Code 8	Code 21	Code 28	Code 33				
	3/16"	3/16" 0.188		Code 13	Code 22	_	Code 34				
	1/4"	0.25	None	Code 14	Code 23		Code 35				
	20 x 20	0.034	6" - 10"*	Code 15	Code 5**	_	—				
	24 x 110	0.0056	5" - 10"	—	Code 24	_	Code 2				
Maab	40 x 40	0.015	1-1/2" - 10"	Code 16	Code 6		Code 37				
Mesh	100 x 100	0.0055	All sizes	Code 9	Code 25		Code 38				
	150 x 150	0.0041	All sizes	Code 40	—						
	200 x 200	0.0029	All sizes	Code 17			Code 39				

*Except 6" - 125 lb cast iron

**On Code 5—2-1/2" thru 10" require back-up screens

Shade indicates only available screen choices for CA Series Strainers.

(1) 30 x 30 mesh screen only available for CA Series Strainers.

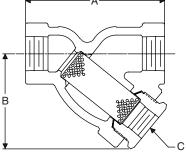
Ratio of O	pen Area of Scre	een to Inside Are	a of Pip	е										
Strainer	Total Screen	Inside Area of		Ra	ntio—Pe	erforate	d Screen:	s			Ratio-	-Wire Me	sh Screens	
Size	Area, sq in	Pipe, sq in	1/64"	1/32"	.045"	1/16"	1/8"	3/16"	1/4"	24 x 110	20 x 20	40 x 40	100 x 100	200 x 200
1/2"	7.2	0.30	5.2	5	6.4(5)	5.2	6.9(5.4)	8.8	10	4.8(3.8)	6.6	5.2(4.1)	2.2(1.8)	2.5
3/4"	7.2	0.53	4	3.9	5	4	5.4	6.9	7.8	3.8	5.3	4.1	1.8	2
1"	11	0.86	3.8	3.7	4.7	3.8	5.1	6.5	7.4	3.7	5.2	4	1.7	1.9
1-1/4"	15.9	1.49	3.2	3	3.9	3.2	4.2	5.4	6.1	3.2	4.4	3.4	1.5	1.6
1-1/2"	23.6	2.03	3.4	3.3	4.3	3.4	4.6	5.9	6.7	3.5	4.8	2.8	1.6	1.8
2"	34.4	3.35	3	2.9	3.8	3	4.1	5.2	5.9	3.2	4.4	2.6	1.5	1.6
2-1/2"	54.4	4.78	3.4	3.3	4.2	3.4	4.5	5.8	6.6	3.3	3.5†	2.7	1.7	1.9
3" 125#	74	7.39	1.7	2.9	3.7	3	4	5.1	5.8	2.9	3.1†	2.3	1.5	1.7
3" 250#	87	7.39	2	3.4	4.3	3.5	4.7	6	6.8	3.5	3.8†	2.8	1.8	2
4" 125#	123	12.7	1.7	2.8	3.5	2.9	3.8	4.9	5.6	2.8	3†	2.3	1.5	1.6
4" 250#	145	12.7	2	3.3	4.2	3.4	4.5	5.8	6.6	3.4	3.7†	2.1	1.8	2
6" 125#	272	28.9	1.6	2.7	3.4	2.8	3.1	4.8	5.4	1.6	3	1.8	1.5	1.6
6" 250#	317	28.9	1.9	3.1	4	3.2	4.3	5.5	6.3	1.9	2.7	2.1	1.7	1.9
8" 125#	464	50	1.6	2.6	3.4	2.7	3.7	4.7	5.3	1.6	2.3	1.8	1.5	1.7
8" 250#	550	50	1.9	3.1	4	3.3	4.4	5.6	6.3	2	2.8	2.1	1.8	2
10" 125#	733	78.8	1.6	2.7	3.4	2.7	3.7	4.7	5.4	1.7	2.3	1.8	1.5	1.7
F	Percentage Oper	n Area	30%*	29%	37%	30%	40%	51%	58%	33%*	46%*	36%*		_

NOTES: Cast steel, stainless steel and bronze strainers have the same ratios as 250 lb cast iron. This table does not apply to the Forged Steel F22 Strainers on page 441. Numbers in parentheses apply to CA cast iron series only.

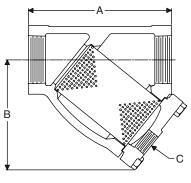
*For unbacked screens.


†Back-up required, Monel only.

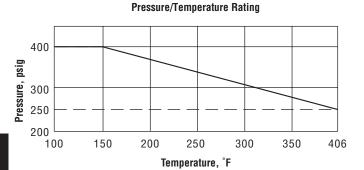
Shade indicates that back-up screens are required.


Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

435



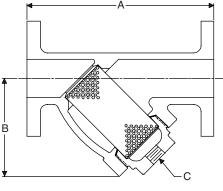
CA1SC 1/2", 3/4", 1", 1-1/2", 2"


CA1SC 1-1/4"

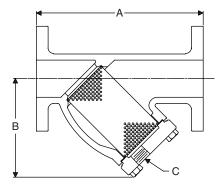
A1SC 2-1/2", 3"

 For a fully detailed certified drawing, refer to:
 CA1SC 1/2", 3/4", 1", 1-1/4", 1-1/2", 2"
 CD #1111

 A1SC 2-1/2", 3"
 CD #1043


Materials: 250	lb Screwed	1/2" - 3" (15 - 80 mm)						
Connection	is Size	Body	Standard Screen	Screen	Gasket	Bolting		
in	mm	Douy		Retainer	UdSKCI	bonning		
1/2, 3/4	15, 20				Spiral Wound			
1, 1-1/2, 2	25, 40, 50	ASTM A48 Class 30	304 SS .045" perforated†	ASTM A48 Class 30		N/A		
1-1/4	32	Cast Iron		Class 50 Cast Iron	Soft Steel			
2-1/2, 3	65, 80		304 SS .045" perforated†		Non-asbestos	Cap Screws ASTM A193 Gr. B7		

†NOTE: Other screen materials available. See page 435.

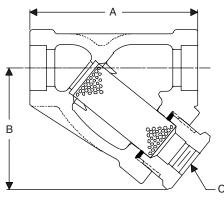

		Ordering					Dimens	ions			N	laximur	n Pressi	ure	0	
Siz	e	Code, Standard	Weight		A B		В			C	Saturated 150°F (66°C) Steam non-shock		Screen Retainer Type	Connections		
in	mm	Screen	lb	kg	in	mm	in	mm	in	mm	psig	bar	psig	bar	ishe	
1/2	15		2	- 4	4 1 / 4	100	2	70	3/8	9.5						
3/4	20		3	1.4	4-1/4	108	3	76]					
1	25	0.1100	4-1/2	2	5	127	3-3/4	95							Threaded	
1-1/4	32	CA1SC	7	3	5-1/2	140	3-7/8	98	1/2	15	250	17	400	00	Threaded	ANSI B1.20.1
1-1/2	40		10	4.5	6-5/16	160	4-7/16	113			250	17	400	28		Screwed
2	50		15	6.8	7-1/2	191	5-7/16	138								
2-1/2	65	0.014	24-1/2	11	8-1/2	216	6-7/16	164	3/4	20]				Daltad	
3	80	A1SC	45-1/2	21	10-1/2	267	8	203	1-1/4	32]				Bolted	

Cast Iron Class 125 Flanged 2"- 10" and Class 250 Flanged 2" - 8"

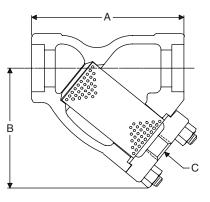
2" Class 125 or 250 Flanged

2-1/2" - 10" Class 125 Flanged, 2-1/2" - 8" Class 250 Flanged

For a fully detailed certified drawing, refe	r to list below:
2" Class 125 or 250 Flanged	CD #1044
2-1/2" - 10" Class 125 Flanged	CD #1045
2-1/2" - 8" Class 250 Flanged	CD #1046

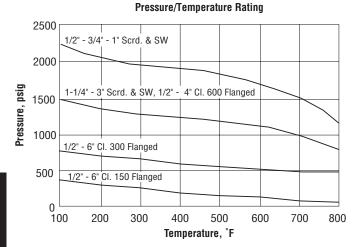


Materials: Class 125 Flanged 2" - 10" (50 - 250 mm) and Class 250 Flanged 2" - 8" (50 - 200 mm)										
Connect	Connection Size			Gasket	Bolting	Standard Screen				
in	mm	-	Retainer							
2	50	ASTN	Л А48	Soft Steel	N/A	304 SS .045" perforated†				
2-1/2, 3, 4, 6, 8	65, 80, 100, 150, 200	Clas	s 30	Non-asbestos	Cap Screws ASTM	304 55 .045 perioraleu j				
10 Class 125 Only	250	Cast	Iron	NUII-ASDESIUS	A193	304 SS 1/8" perforated†				


†NOTE: Other screen materials available. See page 435.

Physica	l Data:	Class 125 F	langed 2	" - 10"	(50 - 250 m	m) and	Class 250 I	Flanged	2" - 8" (5	0 - 200	mm)					
		Ordering					Dimensi	ons			Maximum Pressure				0	
Siz	e	Code, Standard	Wei	ght	A		В		C			Saturated Steam		(66°C) shock	Screen Retainer Type	Conn.
in	mm	Screen	lb	kg	in	mm	in	mm	in	mm	psig	bar	psig	bar	турс	
2	50		22	10	9-3/4	248	5-1/8	130	1/2	15					Threaded	
2-1/2	65		36	16	11-1/16	281	6-7/16	164	3/4	20						
3	80	A1FL125	49	22	12-1/4	311	7-1/4	184	1-1/4	32]					Class 125
4	100	AIFLIZO	83	38	14-7/8	378	9-1/2	241	1-1/4	32	125	8.6	175	12	Bolted	ANSI B16.1 Flat Faced
6	150		187	85	20-7/16	519	13-7/8	353	1-1/2	40]				DUILEU	
8	200		320	145	23-3/4	603	17-3/4	451	2	50]					
10	250	A8FL125	566	257	29-3/8	746	21-1/2	546	2	50]					
2	50		25	11	10-1/4	260	5-1/8	130	1/2	15					Threaded	
2-1/2	65		42	19	11-11/16	297	6-7/16	164	3/4	20]					
3	80	A1FL250	70	32	14-1/8	283	8-1/2	216	1-1/4	32	250	17	400	28		Class 250 ANSI B16.1
4	100	AIFLZOU	125	57	17-1/8	435	10-3/4	273	1-1/4	32	200		400	20	Bolted	1/16" RF
6	150		294	133	23-1/2	597	15-3/4	400	1-1/2	40						1/10/11
8	200		508	230	27-1/2	699	20-1/4	514	2	50]					

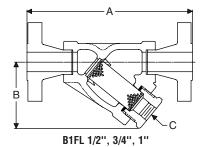
Armstrong[®] Cast Carbon Steel (WCB) 600 lb and 900 lb Screwed or Socketweld 1/2" - 3"

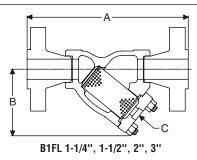


900 lb-B1SC/B1SW 1/2", 3/4", 1"

⁶⁰⁰ lb-B1SC/B1SW 1-1/4", 1-1/2", 2", 3"

For a fully detailed certified drawing, refer to	o:
900 lb—B1SC/B1SW 1/2", 3/4", 1"	CD #1047
600 lb-B1SC/B1SW 1-1/4", 1-1/2", 2", 3"	CD #1048




Materials: 600 lb a	nd 900 lb Scr	ewed or Socket	weld 1/2" - 3" (15 - 80 m	ım)		
Connection	Size	Body	Screen Retainer	Gasket	Bolting	Standard Screen
in	mm	Douy	Sciecii netaillei	Gaskei	Donning	Stanuaru Scieen
1/2, 3/4	15, 20		ASTM A108 Gr. 1045	Soft Steel	N/A	
1	25	ASTM A216 Gr.	ASTM A108 Gr. 1040	SUIL SIEEL	N/A	304 SS
1-1/4, 1-1/2, 2	32, 40, 50	WCB	ASTM A216 Gr. WCB	304 SS Spiral Wound Non- asbestos	Studs ASTM A193 Gr. B7 Nuts ASTM A194 Gr. 2H	.045" Perforated†
3	80			Non-asbestos	Cap Screws ASTM A193 Gr. B7	

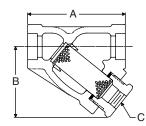
†NOTE: Other screen materials available. See page 435.

		Ordonin	a Codo				Dimensions Maximum Pressure						0				
Siz	e	Orderin Standard		Weig	ght	A B		0	C		Saturated Steam		(38°C) shock	Screen Retainer Type	Connections		
in	mm	Scr'd	SW	lb	kg	in	mm	in	mm	in	mm	psig	bar	psig	bar	INhe	
1/2	15			2-1/2	1	3-3/4	95	2-11/16	68	3/8	9.5						
3/4	20]		3-1/2	1.6	4-3/16	106	2-15/16	75			1,635	113	2,220	153	Threaded	ANSI B1.20.1
1	25	1		6	2.7	5	127	3-1/2	89	1							Screwed
1-1/4	32	B1SC	B1SW	9	4	5-1/2	140	4-3/16	106	1/2	15]
1-1/2	40]		11	5	6-5/16	160	4-13/16	122]		1 105	70	1 400	100	Daltad	ANSI B16.11
2	50]		19	9	7-3/4	197	5-5/8	143]		1,135	78	1,480	102	Bolted	Socketweld
3	80			46	21	11-3/8	289	8-3/16	208	1-1/4	32]					

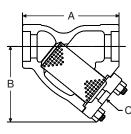
Cast Carbon Steel (WCB) Class 150, 300 Flanged 1/2" - 6" and Class 600 Flanged 1/2" - 4" Armstrong.

For a fully detailed certified drawing, refer to: B1FL 1/2", 3/4", 1" CD #1050

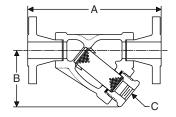
B1FL 1-1/4", 1-1/2", 2", 3" CD #1051


Materials: Class	150, 300 Flan	ged 1/2" - 6" (1	15 - 150 mm) and	d Class 600 Flanged 1/2" - 4" (15 - 100	mm)	
Connectio	on Size	Body	Screen	Gasket	Bolting	Standard
in	mm	Douy	Retainer	Claskel	bonnig	Screen
1/2, 3/4	15, 20		ASTM A108	Soft Steel	N/A	
1	25	ASTM A216	Gr. 1045		N/A	304 SS .045"
1-1/4, 1-1/2, 2	32, 40, 50	Gr. WCB	ASTM A216 Gr. WCB	304 SS Spiral Wound Non-asbestos	Studs ASTM A193 Gr. B7 Nuts ASTM A194 Gr. 2H	Perforated [†]
3, 4, 6	80, 100, 150		GI. WCD	Non-asbestos	Cap Screws ASTM A193 Gr. B7	

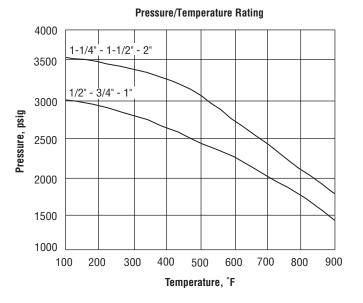
†NOTE: Other screen materials available. See page 435.


		Orderina					Dimensio	ns			M	aximu	m Pressu	re			
Siz	e	Code, Standard	Weig	lht	A		В		C	;	Satura Stea		100°F (non-s		Screen Retainer Type	Flanges	
in	mm	Screen	lb	kg	in	mm	in	mm	in	mm	psig	bar	psig	bar	iyhe		
1/2	15		5	2.3	6-7/8	175	2-11/16	68	3/8	9.5							
3/4	20		10	4.5	7-3/8	187	2-15/16	75							Threaded		
1	25		10-1/2	4.8	8-1/2	216	3-1/2	89									
1-1/4	32	B1FL 150	15	7	9	229	4-3/16	106	1/2	15							
1-1/2	40		20	9	10-1/4	260	4-13/16	122	1		205	14	285	20		Class 150 ANSI B16.5 1/16" RF	
2	50		29	13	11-1/2	292	5-5/8	143							Delted	D10.3 1/10 NF	
3	80		82	37	15-5/8	397	8-3/16	208	1-1/4	32					Bolted		
4	100		63	28	12-1/8	308	8-15/16	227	1-1/2	38							
6	150	BK1FL 150	136	61	18-1/2	470	13-1/4	337	2	51							
																,	
1/2	15		6-1/2	3	7-1/4	184	2-11/16	68	3/8	9.5							
3/4	20		12	5	7-3/4	197	2-15/16	75							Threaded		
1	25		13-1/2	6	8-7/8	226	3-1/2	89									
1-1/4	32	B1FL 300	17-1/2	8	9-5/8	244	4-3/16	106	1/2	15							
1-1/2	40		26	12	10-3/4	273	4-13/16	122			605	42	740	51		Class 300 ANS B16.5 1/16" RF	
2	50		33	15	12-1/8	308	5-5/8	143]						Bolted	D10.5 1/10 11	
3	80		92	42	16-3/8	416	8-3/16	208	1-1/4	32	1				Boiled		
4	100	BK1FL 300	90	40	14-1/2	368	8-15/16	227	1-1/2	38							
6	150	BRIFL 300	180	81	19-5/16	491	13-1/4	337	2	51	1						
										<u> </u>							
1/2	15		11	5	7-11/16	195	2-11/16	68	3/8	9.5							
3/4	20		12	5.4	8-1/4	210	2-15/16	75							Threaded		
1	25		13-1/2	6	9-3/8	238	3-1/2	89									
1-1/4	32	B1FL 600	18-1/2	8.5	10-1/4	260	4-3/16	106	1/2	15	1 105	70	1400	100		Class 600 ANSI	
1-1/2	40		28	13	11-5/16	287	4-13/16	122	1		1,135	78	1480	102		B16.5 1/4" RF	
2	50		36	16	12-3/4	324	5-5/8	143	1						Bolted		
3	80		95	43	17-1/8	435	8-3/16	208	1-1/4	32	1						
4	100	BK1FL 600	160	72	18	457	12-1/2	317	1-1/2	38	1						

NOTE: For pressure/temperature ratings, see page 438.



C1SC/C1SW 1/2", 3/4", 1"



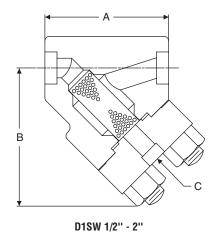
C1SC/C1SW 1-1/4", 1-1/2", 2"

C1FL 1/2", 3/4", 1"

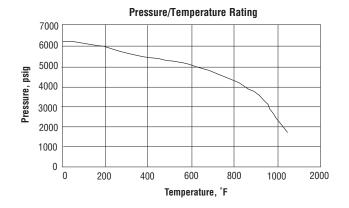
C1FL 1-1/4", 1-1/2", 2"

For a fully detailed certified drawing,	refer to list below:
C1SC/C1SW 1/2", 3/4", 1"	CD #1055
C1SC/C1SW 1-1/4", 1-1/2", 2"	CD #1058
C1FL 1/2", 3/4", 1"	CD #1057
C1FL 1-1/4", 1-1/2", 2"	CD #1058

Materials: 1,500 lb	Screwed, Socke	tweld and Cl. 1,5	00 lb Flanged 1/2" - 2" (15	- 50 mm)		
Connection	n Size	Body	Screen Retainer	Gasket	Bolting	Standard
in	mm	Douy		udsket	Donnig	Screen
1/2, 3/4, 1	15, 20, 25	ASTM A217 Gr.	ASTM A276	Soft Steel	N/A	204.00.045"
1-1/4, 1-1/2, 2	32, 40, 50	WC6	ASTM A217 Gr. WC6	316L SS Spiral Wound Non-asbestos	Studs ASTM A193 Gr. B16 Nuts ASTM A194 Gr. 2H	304 SS .045" perforated†


†NOTE: Other screen materials available. See page 435.

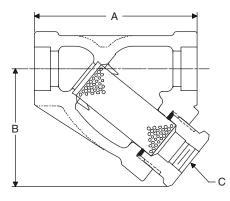
Physica	l Data:	1,500 lb	Screwed,	Socketw	eld an	id Cl. 1,5	00 lb F	langed 1/2'	" - 2" (1	15 - 50) mm)				N		
		Ordori	ing Code				Dimensions					M	aximu	m Pressu	re	Coroon	
Siz	e	1	rd Screen	Weig	ht	A		В			C	Satur Stea		100°F (non-s		Screen Retainer Type	Connections
in	mm	Scr'd	SW	lb	kg	in	mm	in	mm	in	mm	psig	bar	psig	bar	Type	
1/2	15	C1SC	C1SW	2-1/2	1.1	3-3/4	95	2-11/16	68	3/8	9.5						ANCI
3/4	20	C1SC	C1SW	3-1/2	1.6	4-3/16	106	2-15/16	75	1/2	15	2,090	144	3,000	207	Threaded	ANSI B1.20.1
1	25	C1SC	C1SW	5-1/2	2.5	5	127	3-1/2	89	1/2	15						Screwed
1-1/4	32	C1SC	C1SW*	17	8	6-3/4	171	6	152	3/4	20						
1-1/2	40	C1SC	C1SW*	17	8	6-3/4	171	6	152	3/4	20	2,515	173	3,600	248	Bolted	ANSI B16.11
2	50	C1SC	C1SW*	25	11	8-1/4	210	7-7/16	189	1	25						Socketweld
1/2	15	C1F	L1500	12	5	8-1/4	210	2-11/16	68	3/8	9.5						
3/4	20	C1F	L1500	15-1/2	7	9-3/8	238	2-15/16	75	1/2	15	2,090	144	3,000	207	Threaded	
1	25	C1F	L1500	22-1/2	10	10-1/4	260	3-1/2	89	1/2	15]					Class 1500 ANSI
1-1/4	32	C1F	L1500*	37	17	12-1/8	308	6	152	3/4	20						B16.5 1/4" RF
1-1/2	40	C1F	L1500*	45	20	12-7/8	327	6	152	3/4	20	2,515	173	3,600	248	Bolted	
2	50	C1F	L1500*	78	35	15-5/8	397	7-7/16	189	1	25						


*Socketweld Blowdown Connections.

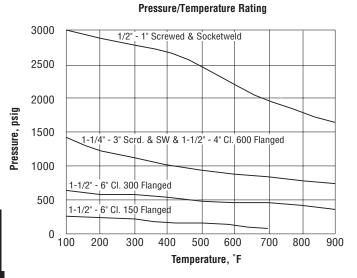
Forged Steel (F22) 2,500 lb Socketweld 1/2" - 2"

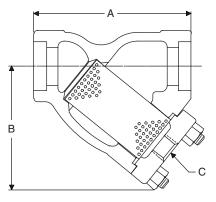
For a fully detailed certified drawing, refer to CD #1059.

Materials: 2,500 lb	Socketweld 1/2"	- 2" (15 - 50 mm)				
Connectio	n Size	Body	Screen	Gasket	Bolting	Standard Screen
in	mm	Bouy	Retainer	Udskei	Bolally	Stalluaru Screen
1/2, 3/4, 1, 1-1/4,	15, 20, 25, 32,	ASTM A182	ASTM A182	347 SS Spiral Wound Non-	Studs ASTM A193 Gr. B16	304 SS .045"
1-1/2, 2	40, 50	Gr. F22	Gr. F22	asbestos	Nuts ASTM A194 Gr. 2H	Perforated ⁺


†NOTE: Other screen materials available. See page 435.

Physical	Data: 2,	500 lb Socketweld 1/2	" - 2" (15 - 50	mm)											
							Dimens	ions			N	laximı	ım Pressı	ire	Caraan	
Siz	e	Ordering Code, Standard Screen	We	ight	A	i.	В			C*	Satur Stea		100°F non-s	· /	Screen Retainer Type	Connections
in	mm		lb	kg	in	mm	in	mm	in	mm	psig	bar	psig	bar	Type	
1/2	15															
3/4	20		26	12	5-1/8	130	5-5/8	143								
1	25	D1SW							1/2	15	2,500	172	6.000	414	Bolted	ANSI B16.11
1-1/4	32	01910							1/2	10	2,300	1/2	0,000	414	DUILEU	Socketweld
1-1/2	40		56	25	6-5/8	168	7-3/8	187								
2	50															


*Socketweld blowdown connections for 1/2" (15 mm) pipe.

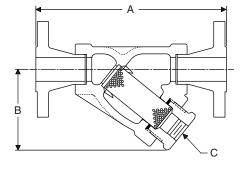


Cast Stainless Steel (CF8M) 1,500 lb and 600 lb Screwed, Socketweld 1/2" - 3"

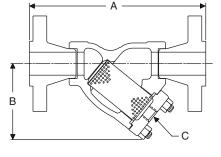
1500 Lb. E7SC/E7SW 1/2", 3/4", 1"

600 Lb. E7SC/E7SW 1-1/4", 1-1/2", 2", 3"

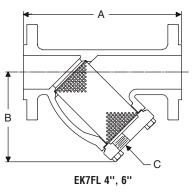
For a fully detailed certified drawing, refer to: E7SC/E7SW 1/2", 3/4", 1"CD #1060 E7SC/E7SW 1-1/4", 1-1/2", 2", 3" CD #1061


Materials: 1,500 lb a	and 600 lb Screv	wed or Socketwe	ld 1/2" - 3" (15 -	80 mm)		
Connectio	n Size	Body	Screen	Gasket	Bolting	Standard Screen
in	mm	Douy	Retainer	GUSKCI	bonnig	
1/2, 3/4, 1	15, 20, 25		ASTM A276	316 SS Flat	N/A	
1-1/4, 1-1/2, 2	32, 40, 50	ASTM A351 Gr. CF8M	ASTM A351 Gr. CF8M	304 SS Spiral Wound Non- asbestos	Studs ASTM A193 Gr. B7 Nuts ASTM A194 Gr. 2H	316 SS .045" perforated†
3	80	GFOIVI	Non-asbestos	Cap Screws ASTM A193 Gr. B7		

†NOTE: Other screen materials available. See page 435.


Physic	al Data	ı: 1,500 II	o and 600	lb Scre	wed o	r Socketv	veld 1/2	2" - 3" (15 ·	80 mr	n)							
		Orderin	a Code					Dimensi	ons			M	aximu	m Pressu	re	Caroon	
Siz	e	Standard	•	Weię	jht	A B		C	C Saturated Steam					Screen Retainer Type	Connections		
in	mm	Scr'd	SW	lb	kg	in	mm	in	mm	in	mm	psig	bar	psig	bar	INhe	
1/2	15	4500 //	4500 //	2-1/2	1.1	3-3/4	95	2-11/16	68	3/8	9.5						
3/4	20	1500# E7SC	1500# E7SW	3-1/2	1.6	4-3/16	106	2-15/16	75			2,090	144	3,000	207	Threaded	ANSI B1.20.1
1	25	L/30	LIJW	6	3	5	127	3-1/2	89								Screwed
1-1/4	32			9	4	5-1/2	140	4-3/16	106	1/2	15						
1-1/2	40	600#	600#	11	5	6-5/16	160	4-13/16	122			935	64	1 1 1 10	99	Bolted	ANSI B16.11
2	50	E7SC	E7SW	19	9	7-3/4	197	5-5/8	143			935	04	1,440	33	DUILEO	Socketweld
3	80			50	23	11-3/8	289	8-3/16	208	1-1/4	32						

Cast Stainless Steel (CF8M) CI. 150, 300 Flanged 1/2" - 6" and CI. 600 Flanged 1/2" - 4"



E7FL 1/2", 3/4", 1"

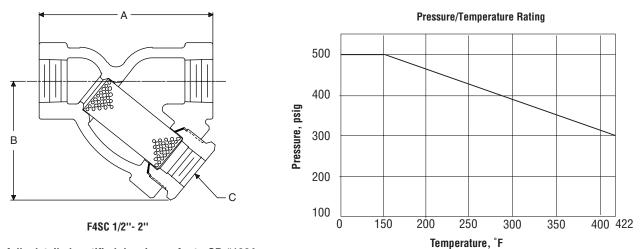
E7FL 1-1/2", 2", 3"

For a fully detailed certified drawing, refer to list below: E7FL 1/2["], 3/4", 1" E7FL 1-1/2", 2", 3" EK7FL 4", 6"

CD #1071
CD #1063
Consult Factory

Materials: Cl. 150	Materials: Cl. 150, 300 Flanged 1/2" - 6" (15 - 150 mm) and Cl. 600 Flanged 1/2" - 4" (15 - 100 mm)										
Connectio	on Size	Bodv	Screen Retainer	Gasket	Bolting	Standard Screen					
in	mm	bouy	Screen netainer	Claskel	boiting	Stalluaru Scieeli					
1/2, 3/4, 1	15, 20, 25		ASTM A276	316 SS Flat	N/A						
1-1/2, 2	40, 50	ASTM A351 Gr. CF8M	ASTM A351 Gr. CF8M	304 SS Spiral Wound Non- asbestos	Studs ASTM A193 Gr. B7 Nuts ASTM A194 Gr. 2H	316 SS .045" perforated†					
3, 4, 6	80, 100, 150			Non-asbestos	Cap Screws ASTM A193 Gr. B7						

†NOTE: Other screen materials available. See page 435.


Physica	l Data:	Class 150, 300	Flanged 1	/2" - 6	o" (15 - 150	mm) a	nd Class 6	00 Flai	iged 1/2	" - 4" (15 - 10	0 mm))			
		Ordening Code					Dimensio	ons			IV	laxim	um Press	ure	Screen	
Siz	e	Ordering Code, Standard Screen	Weig	jht	A		В		C	;	Satur Stea		100°F non-s	· /	Retainer Type	Flanges
in	mm	otreen	lb	kg	in	mm	in	mm	in	mm	psig	bar	psig	bar	Type	
1/2	15		5	2.3	6-7/8	175	2-11/16	68	3/8	9.5						
3/4	20		10	4.5	7-3/8	187	2-15/16	75							Threaded	
1	25	E7FL 150	11	5	8-3/8	213	3-1/2	89	1/2	15						
1-1/2	40		20	9	10-1/8	257	4-13/16	122	1/2		200	14	275	19		ANSI B16.5
2	50		25	11	11-1/2	292	5-5/8	143			200	14	215	19		1/16" RF
3	80		55	25	15-5/8	397	8-3/16	208	1-1/4	32]				Bolted	
4	100	EK7FL 150	63	28	12-1/8	308	8-15/16	227	1-1/2	38]					
6	150	EK/FL 100	136	61	18-1/2	470	13-1/4	337	2	51]					
1/2	15		6-1/2	3	7-1/4	184	2-11/16	68	3/8	9.5						
3/4	20		9-1/2	4.3	7-3/4	197	2-15/16	75			1				Threaded	
1	25	E7FL 300	13-1/2	6	8-7/8	226	3-1/2	89	1/2	15						
1-1/2	40	E/FL 300	22	10	10-3/4	273	4-13/16	122	1 1/2	15	495	34	720	50		ANSI B16.5
2	50		33	15	12-1/8	308	5-5/8	143			490	34	120	50		1/16" RF
3	80		74	34	16-3/8	416	8-3/16	208	1-1/4	32]				Bolted	
4	100	EK7FL 300	90	40	14-1/2	368	8-15/16	227	1-1/2	38]					
6	150	ENTEL 300	180	81	19-15/16	491	13-1/4	337	2	51						
1/2	15		8-1/2	4	7-11/16	195	2-11/16	68	3/8	9.5						
3/4	20	1	9-1/2	4.3	8-1/4	210	2-15/16	75			1				Threaded	
1	25		13-1/2	6	9-3/8	238	3-1/2	89		45						
1-1/2	40	E7FL 600	27	12	11-5/16	287	4-13/16	122	1/2	15	935	64	1440	99		ANSI B16.5 1/4" RF
2	50		31	14	12-3/4	324	5-5/8	143	1						Dalkad	1/4 NF
3	80		74	34	17-1/8	435	8-3/16	208	1-1/4	32	1				Bolted	
4	100	EK7FL 600	160	72	18	457	12-1/2	317	1-1/2	38	1					

NOTE: For pressure/temperature ratings, see page 442.

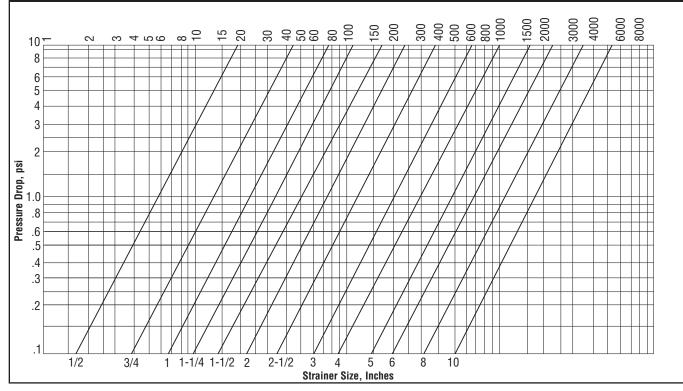
Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Strainers

For a fully detailed certified drawing, refer to CD #1064.

Materials: 300 lb Screwed 1/2" - 2" (15 - 50 mm)

Connection	Size	Body	Screen	Gasket	Bolting	Standard Screen
in	mm		Retainer		J	
1/2, 3/4, 1, 1-1/4, 1-1/2, 2 15, 20, 25, 32, 40, 50		ASTM B62	Brass C	opper	N/A	Brass .045" perforated†


†NOTE: Other screen materials available. See page 435.

Physica	l Data:	300 lb Screwe	d 1/2" -	2" (15 -	50 mm)											
		Ordering					Dimen	sions			I	Maximu	m Pressı	ire	Saraan	
Siz	e	Code, Standard	We	ight	4	4	В			;		rated am	150°F non-s	. ,	Screen Retainer Type	Connections
in	mm	Screen	lb	kg	in	mm	in	mm	in	mm	psig	bar	psig	bar	iyhe	
1/2	15		1-1/2	0.68	3-1/2	89	2-1/2	64	3/8	9.5						
3/4	20		2	0.91	4	102	2-7/8	73]					
1	25	F4SC	3-1/2	1.6	4-3/4	121	3-5/16	84]		300	21	500	34	Threaded	ANSI B1.20.1
1-1/4	32	F430	5	2.3	5-1/4	133	4	102	1/2	15	300		500	34	IIIIeaueu	Screwed
1-1/2	40		7-1/2	3.4	6	152	4-3/8	111]							
2	50		12	5.4	7	178	5-1/2	140]							

444 De

Water Flow Capacities in U.S. Gallons Per Minute (gpm)

Armstrong Y-Type Strainers—Master Selection Table

Master Selecti	on Table								
		Siz	zes	Pressure - Temp	erature Ratings	Pressure - Temp	erature Ratings		
Material	Connections	in		Stan	dard	Metric			
			mm	Steam, Non-Shock	Cold, Non-Shock	Steam, Non-Shock	Cold, Non-Shock		
Cast Iron	Screwed - 250 lb	1/2 - 3	15 - 80	250 psig @ 406°F	400 psig @ 150°F	17 bar @ 208°C	28 bar @ 66°C		
ASTM A48	Class 125 Flanged	2 - 10	50 - 250	125 psig @ 353°F	175 psig @ 150°F	8.6 bar @ 178°C	12 bar @ 66°C		
Class 30	Class 250 Flanged	2 - 8	50 - 200	250 psig @ 406°F	400 psig @ 150°F	17 bar @ 208°C	28 bar @ 66°C		
Cast Carbon	Screwed & Socketweld - 900 lb	1/2 - 1	15 - 25	1,635 psig @ 609°F	2,200 psig @ 100°F	113 bar @ 321°C	153 bar @ 38°C		
Steel ASTM	Screwed & Socketweld - 600 lb	1-1/4 - 3	32 - 80	1,135 psig @ 562°F	1,480 psig @ 100°F	78 bar @ 294°C	102 bar @ 38°C		
A216 Gr.	Class 150 Flanged	1/2 - 6	15 - 150	205 psig @ 390°F	285 psig @ 100°F	14 bar @ 199°C	20 bar @ 38°C		
WCB	Class 300 Flanged	1/2 - 6	15 - 150	605 psig @ 490°F	740 psig @ 100°F	42 bar @ 254°C	51 bar @ 38°C		
WCD	Class 600 Flanged	1/2 - 4	15 - 100	1,135 psig @ 562°F	1,480 psig @ 100°F	78 bar @ 294°C	102 bar @ 38°C		
Cast Chrome	Screwed & Socketweld - 1,500 lb	1/2 - 1	15 - 25	2,090 psig @ 643°F	3,000 psig @ 100°F	144 bar @ 339°C	207 bar @ 38°C		
Moly Steel	Screwed & Socketweld - 1,500 lb	1-1/4 - 2	32 - 50	2,515 psig @ 670°F	3,600 psig @ 100°F	173 bar @ 354°C	248 bar @ 38°C		
ASTM A217	Class 1,500 Flanged	1/2 - 1	15 - 25	2,090 psig @ 643°F	3,000 psig @ 100°F	144 bar @ 339°C	207 bar @ 38°C		
Gr. WC6	Class 1,500 Flanged	1-1/4 - 2	32 - 50	2,515 psig @ 670°F	3,600 psig @ 100°F	173 bar @ 354°C	248 bar @ 38°C		
Forged Steel ASTM A182 Gr. F22	Socketweld - 2,500 lb	1/2 - 2	15 - 50	2,500 psig @ 1,025°F	6,000 psig @ 100°F	172 bar @ 552°C	414 bar @ 38°C		
	Screwed & Socketweld - 1,500 lb	1/2 - 1	15 - 25	2,090 psig @ 643°F	3,000 psig @ 100°F	144 bar @ 339°C	207 bar @ 38°C		
Cast SS	Screwed & Socketweld - 600 lb	1-1/4 - 3	32 - 80	935 psig @ 538°F	1,400 psig @ 100°F	64 bar @ 281°C	97 bar @ 38°C		
ASTM A351	Class 150 Flanged	1/2 - 6	15 - 150	200 psig @ 388°F	275 psig @ 100°F	14 bar @ 198°C	19 bar @ 38°C		
Gr. CF8M	Class 300 Flanged	1/2 - 6	15 - 150	495 psig @ 467°F	720 psig @ 100°F	34 bar @ 242°C	50 bar @ 38°C		
	Class 600 Flanged	1/2 - 4	15 - 100	935 psig @ 540°F	1,440 psig @ 100°F	64 bar @ 282°C	99 bar @ 38°C		
Cast Bronze ASTM B62	Screwed - 300 lb	1/2 - 2	15 - 50	300 psig @ 422°F	500 psig @ 150°F	21 bar @ 217°C	34 bar @ 66°C		

Armstrong[®] Custom Fabricated Strainers

Y-Type Strainers - Forged/Cast

*Class 150 lbs. up to 24" *Class 300 lbs. up to 24" *Class 600 lbs. up to 24" *Class 900 lbs. up to 16"

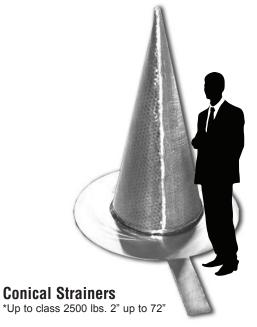
*Class 2500 to 4500 lbs. up to 8"

* Larger sizes are available upon request.

Strainers are designed bolted bonnet as standard, however, pressure seal design is available for class 600 lbs. and over upon request.

Basket Strainers Simplex or duplex type up to 96" body and 72" connections.

Sizes and classes per customer requirements.



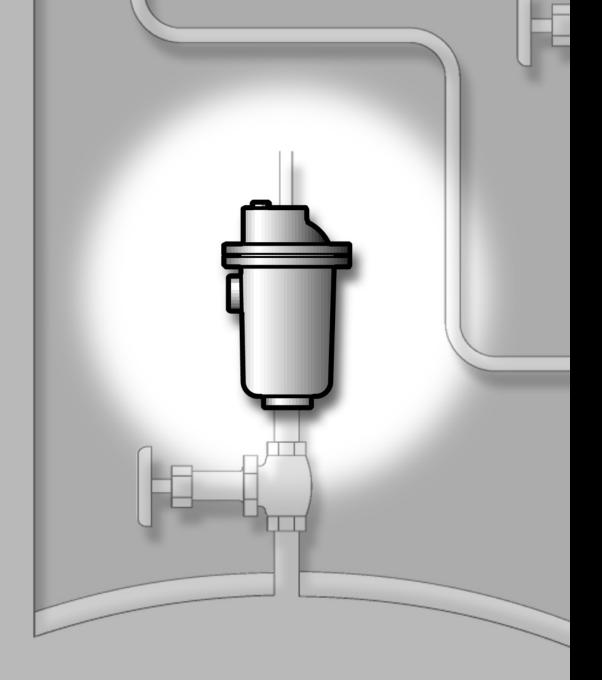
T-Type Strainers - Carbon Steel/Stainless Steel

*Class 150 lbs. 2" to 24" *Class 300 lbs. 2" to 24" *Class 600 lbs. 2" to 24" *Class 600 lbs. 2" to 24" *Class 900 lbs. 2" to 24" *Class 1500 lbs. 2" to 24" *Class 2500 lbs. 2" to 24"

* Larger sizes are available upon request.

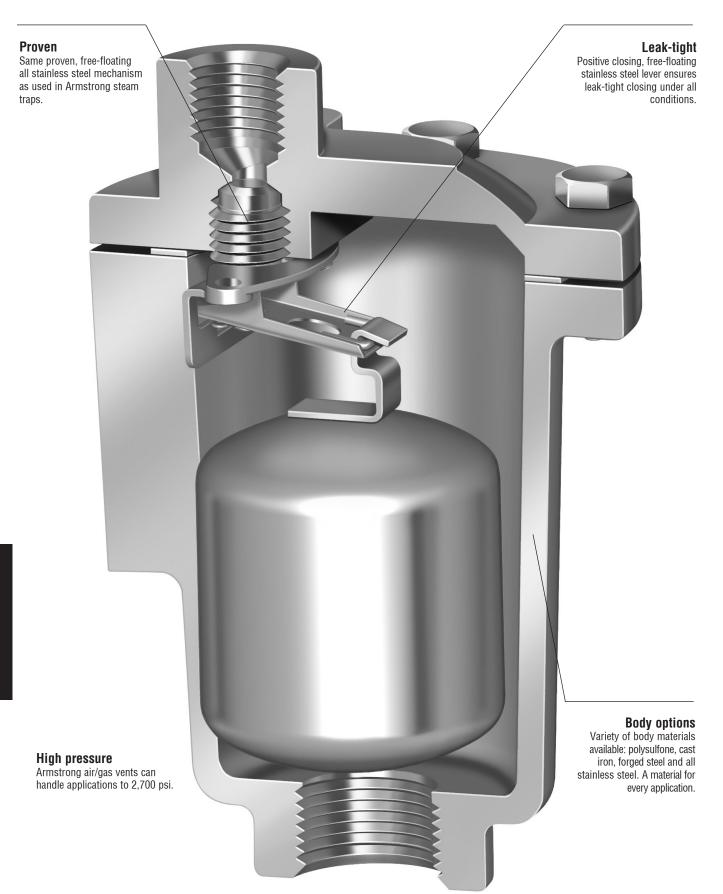
Strainers are designed bolted bonnet as standard, however, pressure seal design is available for class 600 lbs. and over upon request.

* Larger sizes are available upon request.



Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

447



Air Vents

450

Selecting The Armstrong Air/Gas Vent

With the desired CFM capacity known, find the orifice size required from the table on this page. Then find the vent or vents with the correct orifice size on pages 457, 459, 461 or 469 that will operate at the required pressure with a liquid of the specific gravity being handled.

Example—Find a model number that will vent 52 cfm of air (including safety factor of 1.5 - 2.0) from a liquid with a specific gravity of 0.93 at 250 psi. Using the table below, follow the 250 psi line across to the number 60.9. Orifice size is 5/32". Now go to pages 457, 459, 461 or 469 checking the 5/32" orifice lines to locate a vent for 250 psi or higher with 0.90 gravity liquid.

NOTE: Since specific gravity falls between 0.95 and 0.90. use 0.90 gravity data. The model 3-AV on page 456 is the one to use.

For Venting During Filling Only

If a vent is required only for getting rid of air when a system is started up, such as when starting up a deep well pump or filling an empty pipe, tank or other vessel, ability of the vent to open at operating pressure can be ignored. In these cases, a model number with a large orifice for fast venting may be selected, but the vent will not open after air is expelled and the system reaches operating pressure.

Where:

- V = Volume flow rate, ft³/min
- W = Mass flow rate, lb/min
- d = Density, 0.07494 lb/ft³ at standard conditions
- С = Flow coefficient = 0.65
- = Orifice area. in² А
- P1 = Upstream pressure, psia
- P2 = Pressure at throat orifice or downstream pressure = greater of 0.53 P1 or 14.7 psia
- Т Upstream temperature = 530°R =

Ref: Baumeister & Marks, Standard Handbook for Mechanical Engineers, 7th edition.

	ge of Air Through an Orifice in Standard Cubic Feet per Minute at a Standard Atmospheric Pressure of 14.7 psia and 70°F Orifice Diameter, inches																					
pressure										-	ifice D		r, inch	1								
psig	1/16	5/64	3/32	#38	7/64	1/8	9/64	5/32	3/16	7/32	1/4	9/32	5/16	11/32	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1-1/6
5	0.64	1.00	1.44	1.54	1.96	2.56	3.24	4.00	5.76	7.84	10.2	13.0	16.0	19.4	23.0	31.4	41.0	51.9	64.0	92.2	125	185
6	0.70	1.09	1.57	1.69	2.14	2.80	3.54	4.37	6.30	8.57	11.2	14.2	17.5	21.2	25.2	34.3	44.8	56.7	70.0	101	137	202
7	0.75	1.18	1.70	1.82	2.31	3.02	3.82	4.71	6.78	9.23	12.1	15.3	18.8	22.8	27.1	36.9	48.2	61.1	75.4	109	148	218
9	0.85	1.33	1.91	2.05	2.61	3.40	4.31	5.32	7.66	10.4	13.6	17.2	21.3	25.7	30.6	41.7	54.4	68.9	85.1	122	167	246
12	0.98	1.52	2.19	2.35	2.99	3.90	4.94	6.10	8.78	11.9	15.6	19.8	24.4	29.5	35.1	47.8	62.4	79.0	97.5	140	191	282
15	1.09	1.70	2.44	2.62	3.33	4.34	5.50	6.79	9.78	13.3	17.4	22.0	27.2	32.9	39.1	53.2	69.5	88.0	109	156	213	314
20	1.27	1.98	2.86	3.06	3.89	5.08	6.42	7.93	11.4	15.5	20.3	25.7	31.7	38.4	45.7	62.2	81.2	103	127	183	249	367
25	1.45	2.27	3.27	3.50	4.45	5.81	7.35	9.07	13.1	17.8	23.2	29.4	36.3	43.9	52.3	71.1	92.9	118	145	209	285	420
30	1.63	2.55	3.68	3.94	5.01	6.54	8.28	10.2	14.7	20.0	26.2	33.1	40.9	49.5	58.9	80.1	105	132	163	235	320	472
35	1.82	2.84	4.09	4.38	5.57	7.27	9.20	11.4	16.4	22.3	29.1	36.8	45.4	55.0	65.4	89.1	116	147	182	262	356	525
40	2.00	3.13	4.50	4.82	6.13	8.00	10.1	12.5	18.0	24.5	32.0	40.5	50.0	60.5	72.0	98.0	128	162	200	288	392	578
45	2.18	3.41	4.91	5.26	6.69	8.73	11.1	13.6	19.6	26.7	34.9	44.2	54.6	66.0	78.6	107	140	177	218	314	428	631
50	2.37	3.70	5.32	5.70	7.25	9.46	12.0	14.8	21.3	29.0	37.9	47.9	59.2	71.6	85.2	116	151	192	237	341	464	684
60	2.73	4.27	6.15	6.58	8.37	10.9	13.8	17.1	24.6	33.5	43.7	55.3	68.3	82.6	98.3	134	175	221	273	393	535	790
70	3.10	4.84	6.97	7.46	9.49	12.4	15.7	19.4	27.9	37.9	49.6	62.7	77.4	93.7	112	152	198	251	310	446	607	895
80	3.46	5.41	7.79	8.34	10.6	13.9	17.5	21.6	31.2	42.4	55.4	70.1	86.6	105	125	170	222	281	346	499	679	1,001
90	3.83	5.98	8.62	9.2	11.7	15.3	19.4	23.9	34.5	46.9	61.3	77.5	95.7	116	138	188	245	310	383	551	750	1,107
100	4.19	6.55	9.44	10.1	12.8	16.8	21.2	26.2	37.8	51.4	67.1	84.9	105	127	151	206	268	340	419	604	822	1,212
110	4.56	7.13	10.3	11.0	14.0	18.2	23.1	28.5	41.0	55.9	73.0	92.4	114	138	164	223	292	369	456	657	894	1,318
125	5.11	7.98	11.5	12.3	15.6	20.4	25.9	31.9	46.0	62.6	81.7	103	128	155	184	250	327	414	511	736	1,001	1,477
150	6.02	9.41	13.6	14.5	18.4	24.1	30.5	37.6	54.2	73.8	96.4	122	151	182	217	295	385	488	602	867	1,181	1,741
200	7.85	12.3	17.7	18.9	24.0	31.4	39.8	49.1	70.7	96.2	126	159	196	238	283	385	503	636	785	1,131	1,539	2,269
250	9.68	15.1	21.8	23.3	29.6	38.7	49.0	60.5	87.1	119	155	196	242	293	348	474	620	784	968	1,394	1,897	2,798
300	11.5	18.0	25.9	27.7	35.2	46.0	58.3	71.9	104	141	184	233	288	348	414	564	737	932	1,151	1,657	2,256	3,326
400	15.2	23.7	34.1	36.5	46.4	60.7	76.8	94.8	136	186	243	307	379	459	546	743	971	1,228	1,517	2,184	2,973	4,383
500	18.8	29.4	42.4	45.3	57.6	75.3	95.3	118	169	231	301	381	471	569	678	922	1,205	1,525	1,882	2,711	3,689	5,440
600	22.5	35.1	50.6	54.1	68.8	89.9	114	141	202	275	360	455	562	680	809	1,102	1,439	1,821	2,248	3,237	4,406	6,497
750	28.0	43.7	62.9	67.4	85.6	112	142	175	252	343	447	566	699	846	1,007	1,370	1,790	2,265	2,797	4,027	5,481	8,082
1000	37.1	58.0	83.5	89.4	114	148	188	232	334	455	594	751	928	1,123	1,336	1,818	2,375	3,006	3,711	5,344	7,273	10,725

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Vir Vents

Armstrong[®]

Armstrong[®] Air Vent ID Charts

III.uaturat's a	T	Flow	Connection	Max. Allow.	ТМА	Dody Material	Madal	Max. Oper.			Conr	nectio	n Siz	e		Located
Illustration	Туре	Direction	Туре	Press. psig	°F	Body Material	Model	Press. psig	1/8"	1/4"	1/2"	3/4"	1"	1-1/2"	2"	on Page
	Series 1-AVCW See-Thru Free Floating Lever Air Vents for Ozone Applications		Screwed	150	150	PBT Cap (Polybutylene Terephthalate) Polysulfone Body	1-AVCW	150				**				455
	Series 1-AVC See-Thru Free Floating Lever Air/ Gas Vents	->->	Screwed	150	150	Nylon Cap Polysulfone Body	1-AVC	150			•	**				454
	Series 21-AR Fixed Pivot Ball Float Air/Gas Vents	•	Screwed	250	450	ASTM A48 Class 30 Cast Iron	21-AR	250			•	•				469
	Series 21-312 Fixed Pivot Ball Float Air/Gas Vents		Screwed Socketweld Flanged †††	600 or 500	100 or 750	ASTM A105 Forged Steel	21-312AR 21-312VAR	68 600			•	•				469
	Series 1, 2, 3, 6 Free Floating Lever			300	200		1-AV†	300			*	*				
	Air/Gas Vents		Screwed	250	450	ASTM A48 Class 30 Cast Iron	2-AV 3-AV 6-AV	250 250 250			•	•	•	•	•	456
	Series 30 Free Floating Lever Air/Gas Vents			600 or 500	100 or 750		32-AV	600			•	•				
			Screwed Socketweld Flanged †††	1,000 or 600	100 or 750	ASTM A105 Forged Steel	33-AV	900			•	•	•			458
				1,000 or 600	100 or 750		36-AV	1000						•	•	
	Series 10 Free Floating Lever Air/Gas Vents			500 or 440	100 or 500		11-AV ††	400			•	** •				
			Screwed Socketweld (22 and 13 only)	555 or 475	100 or 500	304-L Stainless Steel	22-AV	555				•				460
			Uniy)	570 or 490	100 or 500		13-AV	570					•			
	Series HLAR High Leverage Air/	•			100		2313 HLAR				•	•	•			
	Gas Vents		Screwed Socketweld Flanged †††	100 or 600	100 or 750	ASTM A105 Forged Steel	2315 HLAR	1,000					•	1-1/4 ● 1-1/2 ●		462
	Series HLAR High Leverage Air/ Gas Vents		Correct	1,500 or 900	100 or 850		2316 HLAR 2413 HLAR	1,500			•	•	•	•	•	
	uds vents		Screwed Socketweld Flanged †††	1,800 or 900	850 100 or	ASTM A182 Gr. F22 Forged Steel	2415 HLAR						•	1-1/4 ● 1-1/2 ●		462
				01 900	900		2416 HLAR	1,500						•	•	

 ++
 Side connection not available
 +++
 Flange selection may limit pressure and temperature rating.

Air Vent ID Charts

	_	Flow	Connection	Max. Allow.	ТМА			Max. Oper.		Located						
Illustration	Туре	Direction	Туре	Press. psig	°F	Body Material	Model	Press. psig	1/8"	1/4"	1/2"	3/4"	1"	1-1/2"	2"	on Page
	Series HLAR High Leverage Air/ Gas Vents			2,120 or 1,700	100 or 900		25133G- HLAR	2,125			•	•	•			
			Screwed Socketweld Flanged †††	2,520 or 2,000	100 or 900	ASTM A182 Gr. F22 Forged Steel	25155G- HLAR	2,500				•	•	1-1/4 ●		462
L			-	3,700 or 3,000	100 or 900		26155G- HLAR	2,700					•	1-1/4 ●		
	Series TTF Thermostatic Air Vents	↑	Straight-Thru Right Angle	300	450	304-L Stainless Steel	TTF-1 TTF-1R	300			•	•				464
	Series TV-2 Thermostatic Air Vents	Î	Screwed	125	350	ASTM B62 Cast Bronze	TV-2	125			•					465
	Series TS-2 Thermostatic Air Vents	•	Threaded	50	300	ASTM B62 Bronze	TS-2	50			•	•				466
	AV-11, AV-13 Air Vents	Ť	Screwed	50 150	210	Brass	AV-11 AV-13	50 150	•		•	•				467
	SV-12 Steam Radiator Air Vent		Threaded	15	250	Nickel Plated Brass	SV-12	15	•	•	•	•				468

++ Side connection not available +++ Flange selection may limit pressure and temperature rating.

Air Vents

1-AVC See-Thru Air Vent

For Pressures to 150 psig (7 bar) or Specific Gravity Down to 0.80

A See-Thru Body—So You'll Know When It's Working

Now, you can literally see what you've been missing—the early warning signs of a system problem. Since you'll know the operating condition of the air vent, you won't have to waste time and money scheduling maintenance that isn't needed. In other words, you will be able to react to a condition before it becomes a problem.

A simple ball float mechanism requiring no electricity to operate, the new Armstrong 1-AVC discharges automatically only when air/gas are present. That means no liquid loss as with manual venting.

An Inside Look

See-thru body means you can observe changing conditions as they occur. See a problem in the making—instead of having to deal with it after the fact.

Efficient Operation

Simple ball float mechanism discharges only when air is present so it doesn't waste liquid.

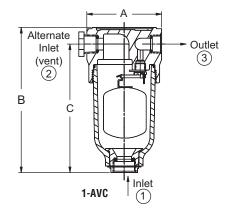
Positive Seating

Free-floating valve mechanism assures positive seating so it prevents liquid loss. There are no fixed pivots to wear or create friction, and wear points are heavily reinforced for long life.

Reduced Maintenance

Stainless steel internals mean corrosion resistance and reduced maintenance.

Corrosion Resistance


Long-lasting polysulfone body and reinforced nylon cap resist corrosion and provide long, trouble-free service life.

List of Materials	
Name of Part	Material
Сар	Reinforced Nylon*
Body	Polysulfone
O-Rings (Body Cap and Fitting)	Nitrile Elastomer Compound
Float Lever and Screws	Stainless Steel
Valve & Seat	Stainless Steel
Fitting & Pipe Plug	Reinforced Nylon
Retainer Ring	Zinc Plated Steel

*UV sensitive.

Physical Data						
	in	mm				
Inlet Connection	1/2, 3/4	15, 20				
Outlet Connection	1/2	15				
"A" Face-to-Face	3-1/2	89				
"B" Height	6-3/4	171				
"C" Bottom to Q	61	52				
Maximum Allowable Pressure (Vessel	150 psig	@ 150°F				
Design)	(10 bar	@ 65°C)				
Maximum Operating Pressure	150 psi	(10 bar)				
Specific Gravity Range	1.00	to 0.80				
Weight, Ib (kg)	1 (.45)					

How to Order

Inlet ①	Alternate Inlet ②	Outlet 3
3/4"	1/2"	1/2"
1/2" or 3/4"	1/2" or 3/4"	1/2"

NOTE: The Armstrong 1-AVC should not be used in an environment where there are high levels of ketones or chlorinated or aromatic hydrocarbons.

For a fully detailed certified drawing, refer to CD #1031.

Model 1-AVC Ca	pacity			
Differentia	l Pressure	Orifice Size	scfm	m³/hr
psig	bar	UTILLE SIZE	20111	1110/111
15	1.0		4.3	7.3
30	2.0		6.5	11.0
50	3.5		9.5	16.1
75	5.0	1/8"	13.1	22.2
100	7.0		16.9	28.7
125	8.5		20.5	34.8
150	10.5		24.2	41.3

NOTE: Discharge of air through an orifice in scfm (standard cubic feet of free air per minute) at a standard atmospheric pressure of 14.7 psi (1 bar) and 70°F (21°C).

1-AVCW See-Thru Air Vent for Ozone Applications

For Pressures to 150 psig (10 bar) or Specific Gravity Down to 0.80

What Is Ozone?

Ozone is a gas that forms naturally during thunderstorms when lightning converts normal oxygen molecules (O^2) into ozone (O^3) . The fresh, sweet smell in the air after a storm is the smell of ozone. The unstable ozone molecule reacts rapidly with most substances and is an extremely strong natural oxidant.

How Is Commercial Ozone Produced?

Ozone can be formed by exposing air to ultraviolet light; however, the most common method of generating ozone is by passing air through an electrical discharge. Because ozone has strong oxidizing properties, its production requires corrosion-resistant equipment.

How Is Ozone Used in Water Filtration and Purification?

Because ozone is such an effective oxidant, it kills viruses, bacteria, mold, mildew, fungus and germs. Passing ozone through water achieves high purification rates without any chemical residue. Oxygen is the only by-product.

Typical Customer Applications:

- Purifying standing ground water in Third World countries.
- · Conditioning water for poultry and livestock.
- Purifying water in the bottled water industry.
- Filtering and purifying water for process applications.

A See-Thru Body Shows You It's Working

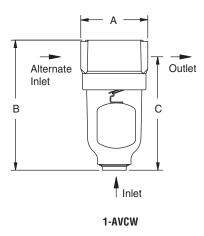
Now, you can literally see what you've been missing. The Armstrong 1-AVCW See-Thru Air Vent lets you easily check its operating condition. You won't have to waste time and money scheduling maintenance that isn't needed, and you can quickly react to a condition before it becomes a problem.

Efficient Operation

Simple ball-float mechanism doesn't need electricity to operate. The air vent automatically discharges only when air or gas is present. No liquid is lost, as with manual venting.

Positive Seating

Free-floating valve mechanism ensures positive seating and prevents liquid loss. There are no fixed pivots to wear or create friction. Wear points are heavily reinforced for long life.


Corrosion Resistance

Long-lasting PBT (polybutylene terephthalate) cap provides trouble-free operation. Stainless steel internal parts resist corrosion and reduce maintenance.

Compare-and Save the Difference

Seeing really is believing–especially when you compare the Armstrong 1-AVCW See-Thru Air Vent with manual venting. Measure the time and money you can save with a more efficient, easier-to-maintain system. For more information or technical assistance, contact your local Armstrong Representative.

NOTE: The Armstrong 1-AVCW should not be used in an environment where there are high levels of ketones or chlorinated or aromatic hydrocarbons.

List of Materials	
Name of Part	Material
Сар	PBT (Polybutylene Terephthalate)
Body	PS0 Polysulfone*
O-Rings (Body Cap and Fitting)	Viton [®]
Float Lever and Screws	T304 Stainless Steel
Valve & Seat	T316 Stainless Steel
Fitting	PBT (Polybutylene Terephthalate)
Retainer Ring	Zinc Plated Steel

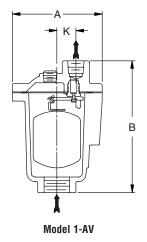
*UV sensitive

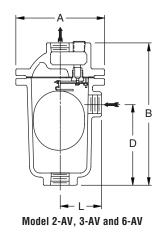
Physical Data		
	in	mm
Inlet Connection (In Body)	3/4	20
Inlet Connection (Alternate)	1/2	15
Outlet Connection	1/2	15
"A" Face-to-Face	3-1/2	89
"B" Height	6-13/16	172
"C" Bottom to Q	6	152
Maximum Allowable Pressure (Vessel Design)		@ 150°F @ 66°F)
Maximum Operating Pressure	150 psi	(10 bar)
Specific Gravity Range	1.00 t	o 0.80
Weight, Ib (kg)	1 (.5)

Model 1-AVCV	V Capacity			
Differentia	I Pressure	Orifice Size	scfm	m³/hr
psig	bar	UTITUE SIZE	SUIII	111 /111
15	1.0		4.3	7.3
30	2.0		6.5	11.0
50	3.5		9.5	16.1
75	5.0	1/8"	13.1	22.2
100	7.0		16.9	28.7
125	8.5		20.5	34.8
150	10.5		24.2	41.3

NOTE: Discharge of air through an orifice in scfm (standard cubic feet of free air per minute) at a standard atmospheric pressure of 14.7 psi (1 bar) and 70°F (21°C).

For a fully detailed certified drawing, refer to CD #1264.





Free Floating Lever Air/Gas Vents—Cast Iron

For Pressures to 300 psig (21 bar) or Specific Gravity Down to 0.40

Armstrong free floating lever Air/Gas Vents use the same bodies, caps, lever mechanisms, valves and seats of Armstrong inverted bucket steam traps that have been proven in years of service.

Elliptical floats and high leverage make it possible to open large orifices to provide adequate capacity for vent size and weight. The hemispherical valve, seat and leverage are identical in design, materials and workmanship to those for saturated steam service up to 1,000 psig, with the exception of the addition of a guidepost to assure a positive, leaktight valve closing under all conditions.

1-AV—A cast iron air vent that uses a positive-closing free floating lever to ensure leaktight closing under all conditions. This vent is good for low capacity air/gas venting up to 300 psi.

For a fully detailed certified drawing, refer to CD #1070.

2-AV, 3-AV and 6-AV—Cast iron vents using the same proven free floating lever mechanisms used in Armstrong steam traps. For applications where high air/gas venting capacity is required up to 250 psi.

For a fully detailed certified drawing, refer to CD #1034.

Madal Na			C	ast Iron							
Model No.	1-AV	**	2-/	AV	3-	AV	6-AV				
Ring Connections	in	mm	in	mm	in	mm	in	mm			
Pipe Connections	1/2*, 3/4*	15, 20	1/2, 3/4	15, 20	3/4, 1	20, 25	1-1/2, 2	40, 50			
"A"	3-3/4	89	5-1/4	133	6-3/8	162	10-3/16	259			
"B"	5-1/2	140	8-3/4	222	11-1/2	292	18	457			
"D"	-	-	5-1/8	130	7	188	9-3/8	238			
"К"	13/16	21	-	-	-	-	-	-			
"L"	-	-	2-7/16	62	2-7/8	73	4-5/8	-			
Weight, Ib (kg)	4 (1.8	3)	12 (5.5)	21 (9.5)	78 (3	5.5)			
Max. Allowable Pressure (Vessel Design)	300 psig @ 200°F (; 250 psig @ 450°F (;		250 psig @ 450°F (17 bar @ 232°C)								

*Outlet connection 1/4" (7 mm). **1-AV available with side connection if specified on order. On models 2-AV, 3-AV and 6-AV, pipe size of side connections is same as that of inlet and outlet connections. Some floats are oil filled. Consult factory for details.

List of Materia	ls						
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket	Bolts	Nuts
1-AV						ASTM A193 Gr. B7	
2-AV		Stainless Steel		ASTM A48 Class 30 Cast	Non-asbestos		ASTM A563 Gr. A
3-AV		SIGILLESS SIGEL		Iron	NULL-G2D62102	SAE Gr. 2	ASTIVI ADOS GI. A
6-AV							

456 Designs, materials, w

Air Vents

Armstrong

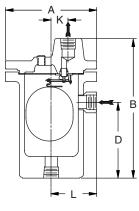
For Pressures to 300 psig (21 bar) or Specific Gravity Down to 0.40

1-AV Maximum Operating Press	sures									
Minimum Specific Gravity	0.	.80								
Orifice Size (in)	Maximum Operating Pressure									
Utilice Size (III)	psi	bar								
1/8	146	10								
7/64	173	12								
#38	219	15								
5/64	300	21								

Maximum Operating Pressures of free floating lever vents with weighted floats for different orifice sizes, and the specific gravities on which they can be used.

Specific Gravity*	1.	00	0.	95	0.	90	0.	85	0.	80	0.75 0.70		0.65		0.0	60	0.5	55	0.	50		
Float wt., oz (g)	7.7 (7.7 (217) 7.3 (206)			6.9 (195) 6.5 (1		6.5 (184) 6		174)	5.7 (163)	5.4 (152)	5.0 (141)	4.6 (130)	4.2 (119)	3.8 (109	
Orifice Size (in)		Maximum Operating Pressure																				
UTITUE SIZE (III)	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	b
5/16	27	1.8	25	1.8	24	1.7	23	1.6	22	1.5	20	1.4	19	1.3	18	1.2	16	1.1	15	1.0	14	C
1/4	44	3.0	42	2.9	40	2.7	38	2.6	35	2.4	33	2.3	31	2.1	29	2.0	27	1.8	24	1.7	22	1
3/16	97	6.7	92	6.4	88	6.0	83	5.7	78	5.4	73	5.0	68	4.7	64	4.4	59	4.1	54	3.7	49	3
5/32	167	12	159	11	151	10.4	142	9.8	134	9.3	126	8.7	118	8.1	110	7.6	101	7.0	93	6.4	85	5
1/8	250	17	250	17	250	17	244	17	230	16	216	15	202	14	187	13	173	12	159	11	145	1
7/64	250	17	250	17	250	17	250	17	250	17	250	17	250	17	240	17	222	15	204	14	186	
#38	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	231	
5/64	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	

3-AV Maximum Operating	Pressu	res																
Specific Gravity*	1.	00	0.9	95	0.	90	0.	85	0.	80	0.75		0.	70	0.	65	0.	60
Float wt., oz (g)	14.9	(423)	14.2	(402)	13.4	(381)	12.7	(360)	12.0	(339)	11.2	(318)	10.5	(296)	9.7 (275)	9.0 (254)
Orifice Size (in)							I	Maximu	m Ope	rating F	Pressur	e						
Office Size (III)	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar
1/2	21	1.5	20	1.4	19	1.3	18	1.3	17	1.2	16	1.1	15	1.0	14	1.0	13	0.9
3/8	45	3.1	43	3.0	41	2.8	38	2.7	36	2.5	34	2.3	32	2.2	30	2.0	27	1.9
5/16	72	5.0	69	4.7	65	4.5	61	4.2	58	4.0	54	3.8	51	3.5	47	3.3	44	3.0
9/32	96	6.6	91	6.3	87	6.0	82	5.6	77	5.3	72	5.0	68	4.7	63	4.3	58	4.0
1/4	144	9.9	137	9.4	130	8.9	123	8.5	116	8.0	109	7.5	102	7.0	94	6.5	87	6.0
7/32	206	14	196	13	186	13	176	12	165	11	155	10.7	145	10.0	135	9.3	125	8.6
3/16	250	17	250	17	250	17	250	17	249	17	234	16	218	15	203	14	188	13
5/32	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17


6-AV Maximum	ı Oper	ating	Press	sures																						
Specific Gravity*	1.	00	0.	95	0.	90	0.	85	0.	80	0.1	75	0.	70	0.	65	0.	60	0.	55	0.5	50	0.	45	0.4	40
Float wt., oz (g)	73.5 (2,084)	69 (1,9).8)79)	66 (1,8	5.2 375)	62 (1,7	2.5 771)	58 (1,6	.8 67)	55 (1,5		51.5 (1,459)	47 (1,3	7.8 354)		4.1 250)).4 46)	36 (1,0		33.1	(938)	29.4	(833)
Orifice Size											Max	imun	n Ope	rating	Pres	sure										
(in)	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar
1-1/16	22	1.5	21	1.5	20	1.4	19	1.3	18	1.2	17	1.2	16	1.1	14	1.0	13	0.9	12	0.8	11	0.8	10	0.70	9	0.62
7/8	35	2.4	33	2.3	31	2.2	30	2.0	28	1.9	26	1.8	24	1.7	23	1.6	21	1.5	19	1.3	18	1.2	16	1.1	14	1
3/4	50	3.5	48	3.3	45	3.1	43	3.0	40	2.8	38	2.6	35	2.4	33	2.3	30	2.1	28	1.9	25	1.8	23	1.6	20	1.4
5/8	77	5.3	73	5.0	69	4.8	66	4.5	62	4.3	58	4.0	54	3.7	50	3.5	46	3.2	43	2.9	39	2.7	35	2.4	31	2.2
9/16	102	7.0	97	6.7	92	6.3	87	6.0	82	5.6	77	5.3	72	4.9	67	4.6	62	4.2	57	3.9	51	3.6	46	3.2	41	3.9
1/2	148	10.2	140	9.7	133	9.2	126	8.7	119	8.2	111	7.7	104	7.2	97	6.7	89	6.2	82	5.6	75	5.1	67	4.6	60	4.1
7/16	210	14	200	14	189	13	179	12	168	12	158	11	148	10.2	137	9.5	127	8.7	116	8.0	106	7.3	96	6.6	85	5.9
3/8	250	17	250	17	250	17	250	17	250	17	249	17	233	16	216	15	200	14	184	13	167	12	151	10.4	134	9.3
11/32	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	245	17	223	15	201	14	179	12
5/16	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	230	16
9/32	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17
1/4	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17

* If specific gravity falls between those shown, use next lowest: e.g., if actual gravity is 0.73, use 0.70 specific gravity data.

Free Floating Lever Air/Gas Vents—Forged Steel

[®] For Pressures to 1,000 psig (69 bar) or Specific Gravity Down to 0.40

Model 32-AV, 33-AV and 36-AV

32-AV, 33-AV and 36-AV—Forged steel vents using the same proven free floating lever mechanisms used in Armstrong steam traps.

For applications where high air/gas venting capacity is required up to 1,000 psi. Available with screwed, socketweld or flanged connections.

For a fully detailed certified drawing, refer to CD #1035.

List of Materials						
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket	Bolting
32-AV						
33-AV		Stainless Steel		ASTM A105 Forged Steel	Non-asbestos	Bolts ASTM A193 Gr. B7 Nuts ASTM A194 Gr. 2H
36-AV				JICCI		NUIS ASTIVI A 194 UI. 211

Physical Data															
Model No.	Forged Steel														
WOUELNU.	32-/	AV†	33-	AV†	36-AV†										
Pipe Connections	1/2, 3/4, 1	15, 20, 25	3/4, 1	20, 25	1-1/2, 2	40, 50									
"A"	6-3/4	171	8	203	11-7/8	301									
"B"	10-3/16	259	11-9/16	294	17-1/8	435									
"D"	5-9/16	141	6-1/16	154	9	229									
"К"	1-1/4	32	1-7/16	37	2-1/8	54									
"["	3-3/8	86	3-7/8	98	6-1/16	154									
Approx. Wt. Ib (kg)	31 (14)		49 (22)		163 (74)										
Max. Allow. Pressure (Vessel Design)	600 psig @ 100°F 500 psi @ 750°F				°F (69 bar @ 38°C) (41 bar @ 399°C)										

†Available in Type 316 SS. Consult factory. Pipe size of side connections if provided is same as that of inlet and outlet connections. Some floats are oil filled. Consult factory for details.

458

Free Floating Lever Air/Gas Vents—Forged Steel

For Pressures to 1,000 psig (69 bar) or Specific Gravity Down to 0.40

High-Temperature Service

Maximum allowable working pressures of floats decrease at temperatures above 100°F. Allow for approximately:

- 10% decrease at 200°F
- 15% decrease at 300°F
- 20% decrease at 400°F

The float is not always the limiting factor, however. Consult with Armstrong Application Engineering if you have a high-temperature application that also requires maximum operating pressures.

Sour Gas Service

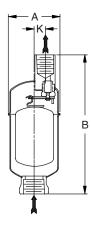
Forged steel and stainless steel traps can be modified to resist hydrogen sulfide stress corrosion. These modifications involve annealing the float, which will reduce the maximum working pressure of the float to about half of its normal value. Consult Armstrong Application Engineering for allowable working pressures.

Maximum Operating Pressures of free floating lever vents with weighted floats for different orifice sizes, and the specific gravities on which they can be used.

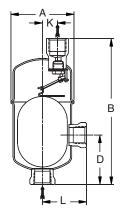
32-AV Maximum Ope	rating P	ressures														
Specific Gravity*	1.	00	0.	95	0.	90	0.	85	0.	80	0.	75	0.	70	0.	65
Float wt., oz (g)	11.8	(335)	11.2	(318)	10.6	(301)	10.0	(285)	9.4 ((268)	8.9 (251)	8.3 ((234)	7.7 (218)
Orifice Size (in)							Maxim	num Ope	rating Pi	ressure						
Office Size (III)	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar
5/16	41	2.8	39	2.7	37	2.6	35	2.4	33	2.3	31	2.1	29	2.0	27	1.9
1/4	68	4.7	64	4.4	61	4.2	58	4.0	54	3.7	51	3.5	47	3.3	44	3.0
3/16	149	10.3	142	9.8	134	9.3	127	8.8	120	8.2	112	7.7	105	7.2	97	6.7
5/32	257	18	244	17	231	16	219	15	206	14	193	13	180	12	168	12
1/8	439	30	417	29	396	27	374	26	352	24	330	23	309	21	287	20
7/64	562	39	534	37	506	35	478	33	450	31	423	29	395	27	367	25
#38	600	41	600	41	600	41	595	41	561	39	526	36	491	34	457	31
5/64	600	41	600	41	600	41	600	41	600	41	600	41	600	41	600	41

33-AV Maximum Operating Pressures

ee in manne eperation																		
Specific Gravity*	1.	00	0.	95	0.	90	0.	85	0.	80	0.	75	0.	70	0.0	65	0.	60
Float wt., oz (g)	14.9	(423)	14.2	(402)	13.4	(381)	12.7	(360)	12.0	(339)	11.2	(318)	10.5	(296)	9.7 (275)	9.0 ((254)
Orifice Size (in)							Γ	Naximu	m Ope	rating F	ressur	9						
Unifice Size (iii)	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar
1/2	21	1.5	20	1.4	19	1.3	18	1.3	17	1.2	16	1.1	15	1.0	14	1.0	13	0.9
3/8	45	3.1	43	3.0	41	2.8	38	2.7	36	2.5	34	2.3	32	2.2	30	2.0	27	1.9
5/16	72	5.0	69	4.7	65	4.5	61	4.2	58	4.0	54	3.8	51	3.5	47	3.3	44	3.0
9/32	96	6.6	91	6.3	87	6.0	82	5.6	77	5.3	72	5.0	68	4.7	63	4.3	58	4.0
1/4	144	9.9	137	9.4	130	8.9	123	8.5	116	8.0	109	7.5	102	7.0	94	6.5	87	6.0
7/32	206	14	196	13	186	13	176	12	165	11	155	10.7	145	10.0	135	9.3	125	8.6
3/16	309	21	294	20	279	19	264	18	249	17	234	16	218	15	203	14	188	13
5/32	484	33	460	32	437	30	413	28	389	27	365	25	342	24	318	22	294	20
1/8	900	62	900	62	883	61	835	58	787	54	739	51	691	48	643	44	595	41
7/64	900	62	900	62	900	62	900	62	900	62	900	62	883	61	822	57	760	52


36-AV M	aximu	m Op	erating) Pres	ssures																					
Specific Gravity*	1.0	00	0.9	5	0.9	0	0.8	5	0.8	80	0.7	5	0.3	70	0.6	65	0.6	60	0.	55	0.5	50	0.	45	0.	40
Float wt., oz (g)	73 (2,0	-	69. (1,97		66. (1,87		62. (1,77		58 (1,6		55. (1,5		51 (1,4		47.8 (*	1,354)	44 (1,2		40 (1,1).4 46)	36 (1,0	-	33.1	(938)		9.4 33)
Orifice											Max	timum	n Opera	ting P	ressure											
Size (in)	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar
1-1/16	22	1.5	21	1.5	20	1.4	19	1.3	18	1.2	17	1.2	16	1.1	14	1.0	13	0.9	12	0.8	11	0.8	10	0.70	9	0.62
7/8	35	2.4	33	2.3	31	2.2	30	2.0	28	1.9	26	1.8	24	1.7	23	1.6	21	1.5	19	1.3	18	1.2	16	1.1	14	1
3/4	50	3.5	48	3.3	45	3.1	43	3.0	40	2.8	38	2.6	35	2.4	33	2.3	30	2.1	28	1.9	25	1.8	23	1.6	20	1.4
5/8	77	5.3	73	5.0	69	4.8	66	4.5	62	4.3	58	4.0	54	3.7	50	3.5	46	3.2	43	2.9	39	2.7	35	2.4	31	2.2
9/16	102	7.0	97	6.7	92	6.3	87	6.0	82	5.6	77	5.3	72	4.9	67	4.6	62	4.2	57	3.9	51	3.6	46	3.2	41	3.9
1/2	148	10.2	140	9.7	133	9.2	126	8.7	119	8.2	111	7.7	104	7.2	97	6.7	89	6.2	82	5.6	75	5.1	67	4.6	60	4.1
7/16	210	14	200	14	189	13	179	12	168	12	158	11	148	10.2	137	9.5	127	8.7	116	8.0	106	7.3	96	6.6	85	5.9
3/8	331	23	315	22	299	21	282	19	266	18	249	17	233	16	216	15	200	14	184	13	167	12	151	10.4	134	9.3
11/32	441	30	419	29	398	27	376	26	354	24	332	23	310	21	288	20	266	18	245	17	223	15	201	14	179	12
5/16	567	39	539	37	511	35	483	33	455	31	427	29	399	27	371	26	342	24	250	17	250	17	250	17	230	16
9/32	743	51	706	49	669	46	633	44	596	41	559	39	522	36	485	33	449	31	250	17	250	17	250	17	250	17
1/4	1,000	69	1,000	69	979	67	925	64	871	60	817	56	763	53	710	49	656	45	250	17	250	17	250	17	250	17
7/32	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	926	64	250	17	250	17	250	17	250	17
3/16	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	250	17	250	17	250	17	250	17

*If specific gravity falls between those shown, use next lowest: e.g., if actual gravity is 0.73, use 0.70 specific gravity data.


Armstrong

Free Floating Lever Air/Gas Vents—All Stainless Steel

[®] For Pressures to 600 psig (41 bar) or Specific Gravity Down to 0.50

Model 22-AV and 13-AV

The Armstrong stainless steel free floating lever air vents have been developed to provide positive venting of air/ gases under pressure.

The body and cap and all working parts of the No. 11-AV, 22-AV and 13-AV are made of high strength, corrosion resistant stainless steel. Body and caps are welded together to form a permanently sealed, tamperproof unit with no gaskets. Elliptical floats and high leverage provide up to 115 SCFM capacity for these compact air/gas vents. Lever action is guided to assure proper seating of the valve under all operating conditions.

11-AV, 22-AV and 13-AV—All stainless steel construction where exposure to either internal or external corrosion is a problem. These air/gas vents have the same proven free floating mechanisms used in other Armstrong steam traps. Pressures to 600 psi @ 100°F (41 bar @ 38°C).

For a fully detailed certified drawing, refer to list below: 11-AV CD #1066 13-AV and 22-AV CD #1086

Physical Data						
Model No.	11-4	V	22-	AV	13-	AV
Pipe Connections	1/2, 3/4**	15, 20**	3/4	20	1	25
"A"	2-3/4	70	3-7/8	99	4-1/2	114
"В"	7-1/4	184	8-13/16	224	11-3/8	289
"D"	-	-	3-3/8	86	6-1/8	156
"K"	9/16	14	7/8	22	1-3/16	30
"L"	-	-	2-5/8	67	3-1/4	83
Weight, Ib (kg)			5 (2	.3)	7-1/2	(3.4)
Max. Allow. Pressure (Vessel Design)	500 psig @ 100°F 440 psig @ 500°F (600 psig @ 100°F 475 psig @ 500°F		570 psig @ 100°F 490 psig @ 500°F	

** 1/2" (15 mm) outlet.

List of Ma	terials			
Model No.	Valve & Seat	Leverage System	Float	Body & Cap
11-AV 22-AV 13-AV	Hardened chrome steel—17-4PH	303/304 Stainless Steel	304 Stainless Steel	Sealed Stainless Steel 304-L

*Type 316 SS valve and seat available. Consult factory.

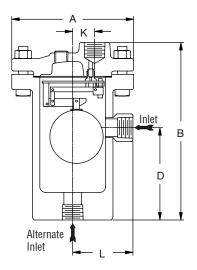
Maximum Operating Pressures of free floating lever vents with weighted floats for different orifice sizes, and the specific gravities on which they can be used.

11-AV Maximum Operating P	ressures							
Minimum Specific Gravity	0.75	5	0.	50				
Float wt., oz (g)								
Orifice Size (in)	Maxin	num Opera	ating Press	sure				
	psi	bar	psi	bar				
1/8	178	12	118	8				
#38	267	18	177	12				
5/64	400	28	311	21				

22-AV Maximum Operation	ng Pre	ssure																				
Specific Gravity*	1.	00	0.	95	0.9	90	0.	85	0.	80	0.	75	0.	70	0.	65	0.	60	0.	55	0.	50
Float wt., oz (g)	10.0	(282)	9.5 (268)	9.0 (254)	8.5 ((240)	8.0 (226)	7.5 (212)	5.4 (152)	5.0 ((141)	4.6 ((130)	4.2 ((119)	3.8 ((109)
Orifice Size (in)									Ма	ximur	n Ope	rating	Press	sure								
UTITICE SIZE (III)	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar
5/16	35	2.4	33	2.3	31	2.2	30	2.0	28	1.9	26	1.8	19	1.3	18	1.2	16	1.1	15	1.0	14	0.9
1/4	57	3.9	54	3.7	51	3.5	49	3.4	46	3.2	43	3.0	31	2.1	29	2.0	27	1.8	24	1.7	22	1.5
3/16	126	8.7	120	8.2	113	7.8	107	7.4	101	7.0	95	6.5	68	4.7	64	4.4	59	4.1	54	3.7	49	3.4
5/32	217	14.9	206	14.2	195	13.5	185	12.7	174	12.0	163	11.2	118	8.1	110	7.6	101	7.0	93	6.4	85	5.8
1/8	371	25.6	352	24.3	334	23.0	316	21.8	297	20.5	279	19.2	202	13.9	187	12.9	173	12.0	159	11.0	145	10.0
7/64	474	32.7	451	31.1	427	29.5	404	27.9	380	26.2	357	24.6	258	17.8	240	16.5	222	15.3	204	14.0	186	12.8
#38	590	40.7	561	38.7	532	36.7	503	34.7	473	32.7	444	30.6	321	22.1	298	20.6	276	19.0	253	17.5	231	15.9
5/64	600	41.4	600	41.4	600	41.4	600	41.4	600	41.4	600	41.4	473	32.6	440	30.3	407	28.1	374	25.8	341	23.5

13-AV Maximum Ope	rating F	Pressure	es															
Specific Gravity*	1.	00	0.	95	0.	90	0.	85	0.	80	0.	75	0.	70	0.	65	0.	60
Float wt., oz (g)	14.9	(423)	14.2	(402)	13.4	(381)	12.7	(360)	12.0	(339)	11.2	(318)	10.5	(296)	9.7 ((275)	9.0	(254)
Orifice Size (in)								Maximu	ım Ope	rating F	ressure)						
Unince Size (iii)	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar
1/2	21	1.5	20	1.4	19	1.3	18	1.3	17	1.2	16	1.1	15	1.0	14	1.0	13	0.9
3/8	45	3.1	43	3.0	41	2.8	38	2.7	36	2.5	34	2.3	32	2.2	30	2.0	27	1.9
5/16	72	5.0	69	4.7	65	4.5	61	4.2	58	4.0	54	3.8	51	3.5	47	3.3	44	3.0
9/32	96	6.6	91	6.3	87	6.0	82	5.6	77	5.3	72	5.0	68	4.7	63	4.3	58	4.0
1/4	144	9.9	137	9.4	130	8.9	123	8.5	116	8.0	109	7.5	102	7.0	94	6.5	87	6.0
7/32	206	14	196	13	186	13	176	12	165	11	155	10.7	145	10.0	135	9.3	125	8.6
3/16	309	21	294	20	279	19	264	18	249	17	234	16	218	15	203	14	188	13
5/32	484	33	460	32	437	30	413	28	389	27	365	25	342	24	318	22	294	20
1/8	570	39	570	39	570	39	570	39	570	39	570	39	570	39	570	39	570	39
7/64	570	39	570	39	570	39	570	39	570	39	570	39	570	39	570	39	570	39

*If specific gravity falls between those shown, use next lowest: e.g., if actual gravity is 0.73, use 0.70 specific gravity data.


Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

461

High Leverage Ball Float Type Air Relief Traps

For Low Flows at Pressures to 2,700 (186 bar) or Specific Gravity Down to 0.49

The Armstrong High Leverage Series of Air Relief traps were developed especially for venting gases from low specific gravity fluids at high pressures. They use standard Armstrong forged steel bodies with very high leverage air relief mechanisms. Available with screwed, socketweld or flanged connections.

NOTE: Models 2313-HLAR, 2316-HLAR, 2413-HLAR and 2415-HLAR are also available with cast T-316 stainless steel body and all-stainless steel internals. Consult factory.

Sour Gas Service

Forged steel and stainless steel traps can be modified to resist hydrogen sulfide stress corrosion. These modifications involve annealing the float, which will reduce the maximum working pressure of the float to about half its normal value. Consult Armstrong Application Engineering for allowable working pressures.

Physical D	ata—Hi	gh Lev	erage Ba	ill Floa	t Type /	Air Re	elief Trap	s										
Model No.	2313-H	ILAR†	2315-ł	ILAR	2316-ł	HLAR	2413-	HLAR†	2415-I	HLAR	2416-H	LAR	25133G	-HLAR	25155G	i-HLAR	26155G	-HLAR
Pipe	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Connections	1/2, 3/4, 1	15, 20, 25	1, 1-1/4, 1-1/2	25, 32, 40	1-1/2, 2	40, 50	1/2, 3/4, 1	15, 20, 25	1, 1-1/4, 1-1/2	25, 32, 40	1-1/2, 2	40, 50	1/2, 3/4, 1	15, 20, 25	3/4, 1, 1-1/4	20, 25, 32	1, 1-1/4	25, 32
"A"	8	203	9-3/4	248	11-7/8	302	8-5/8	219	10-3/4	273	12-1/2	318	8-1/2	216	10-3/8	263	11-3/4	298
"B"	11-9/16	294	15-1/16	383	17-1/8	435	11-7/8	302	15	381	17-3/4	451	14-1/4	362	16-7/32	412	24-1/8	613
"D"	6-1/16	154	7-13/16	198	9	229	5-3/8	137	7-1/4	184	9	229	3	75	4	102	5	127
"G"	5-1/8	130	6-7/8	175	8-3/8	213	5-3/8	137	6-7/8	175	8-5/8	219	5-3/4	146	7-3/8	187	8-3/8	213
"K"	1-7/16	37	1-3/4	44	2-1/8	54	1-7/16	37	1-3/4	44	2-1/8	54	1-5/16	33	1-3/4	44	1-3/4	44
"L"	3-7/8	98	4-11/16	119	5-3/4	146	4	102	4-13/16	122	5-13/16	148	-	-	-	-	-	-
Weight, Ibs (kg)	46 (21)	98 (4	14)	160 (73)	69	(31)	130 ((59)	210 (9	95)	113 ((51)	171	(78)	325 (147)
Maximum Allowable Pressure (Vessel Design)			g @ 100°F @ 750°F (4				(103 bar @ psig @ 85	g @ 100°F 2 38°C) 900 0°F (62 bar 54°C)	(g	800 psig 125 bar @ 900 psig @ 62 bar @	⊉ 38°C) ⊉ 900°F		2,120 psig (146 bar (1,700 psig (117 bar @	@ 38°C) @ 900°F	2,520 psig (174 bar 2,000 psig (138 bar @	@ 38°C) @ 900°F	3,700 psig (255 bar @ 3 psig @ 900° @ 482	38°C) 3,000 °F (207 bar

†Available with cast 316 stainless steel body and all stainless steel internals. Consult factory.

List of Materia	ls				
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket
2313-HLAR				ASTM	
2315-HLAR				A105 Forged	
2316-HLAR				Steel	Compressed
2413-HLAR					Asbestos-free
2415-HLAR	St	ainless Steel		ASTM	
2416-HLAR				A182	
25133G-HLAR				Grade F22	Spiral Wound
25155G-HLAR				Forged Steel	Stainless Steel
26155G-HLAR					non-asbestos

2315-HLAR Maximum (2315-HLAR Maximum Operating Pressures												
Specific Gravity	1.00 -	- 0.61	0.60 -	- 0.51									
Float Weight, oz (g)	9.0 (255)	7.1 (201)									
Orifice	Ma	aximum Ope	rating Pressu	ire									
UTITICE	psi	bar	psi	bar									
3/16	825	56											
5/32			600	41									
1/8	1,000	69	000	41									
3/32													

Maximum Operating Pressures of free floating lever vents with weighted floats for different orifice sizes, and the specific gravities on which they can be used.

2313-HLAR Maximum	Operating P	ressures		
Specific Gravity	1.00	- 0.69	0.68	- 0.54
Float Weight, oz (g)	6.75	(191)	4.75	(135)
Orifica ciza (in)	M	laximum Ope	rating Pressu	ire
Orifice size (in)	psi	bar	psi	bar
1/8				
7/64				
3/32	1,000	69	475	33
5/64				
1/16				

2316-HLAR Maximum Operating Pressures								
Specific Gravity	1.00 -	- 0.70	0.69 - 0.55					
Float Weight, oz (g)	22 (624)	15.5	(439)				
Orifice	M	laximum Ope	rating Pressu	re				
Unince	psi	bar	psi	bar				
7/32								
3/16								
5/32	1,000	69	475	33				
1/8								
3/32								

462

High Leverage Ball Float Type Air Relief Traps For Low Flows at Pressures to 2,700 (186 bar) or Specific Gravity Down to 0.49

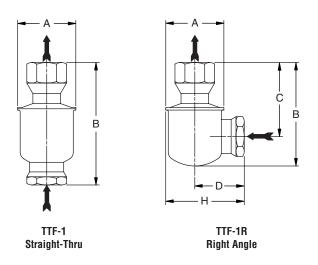
Maximum Operating Pressures of free floating lever vents with weighted floats for different orifice sizes, and the specific gravities on which they can be used.

2413-HLAR Maximum	Operatin	ıg Pressi	ures			
Specific Gravity	1.00 -	1.00 - 0.90		0.89 - 0.69		- 0.54
Float Weight, oz (g)	9.375	(266)	6.75 (191)		4.75 (135)	
Orifice size (in)		Maxin	num Oper	ating Pr	essure	
Office Size (III)	psi	bar	psi	bar	psi	bar
1/8						
7/64				69	475	33
3/32	1,500	103	1,000			
5/64						
1/16						

2416-HLAR Maximum	Operating Pr	essures				
Specific Gravity	1.00 -	- 0.70	0.69 - 0.55			
Float Weight, oz (g)	22 (22 (624) 15.				
Orifice	М	aximum Ope	rating Pressu	essure		
UTITICE	psi	bar	psi	bar		
7/32						
3/16						
5/32	1,400	96	475	33		
1/8						
3/32						

2415-HLAR Maximun	n Operati	ng Pressi	ures							
Specific Gravity	1.00 -	- 0.85	0.84 -	- 0.61	0.60 - 0.51					
Float weight, oz (g)	13.75	13.75 (390) 9.0 (255) 7.1 (2								
Orifice		Maximum Operating Pressure								
UTITCE	psi	bar	psi	bar	psi	bar				
3/16	1,200	83	825	56						
5/32	1,725	119	1,150	80	600	41				
1/8	1.800	124	1 200	0.2	000	41				
3/32	1,000	124	1,200	83						

25133G HLAR Maximum Opera	ting Pressures								
Specific gravity	1.00 -	- 0.98	0.97 - 0.90		0.89 -	0.89 - 0.69		- 0.54	
Float weight, oz (g)	10.5	10.5 (298) 9.375 (266) 6.75 (191) 4.75 (135)							
Orifice		Maximum Operating Pressure							
Offlice	psi	bar	psi	bar	psi	bar	psi	bar	
7/64									
3/32	0.105	140	1 500	100	100 1000	CO 475	475	00	
5/64	2,125	146 1,500	103	1,000	69	475	33		
1/16									


25155G HLAR Maximur	n Operating Pres	sures						
Specific gravity	1.00 -	- 0.95	0.94 - 0.86		0.85 - 0.63		0.62 - 0.52	
Float weight, oz (g)	15.4	(437)	13.75	5 (390)	9.25	(262)	7.1	(201)
Orifice				Maximum Ope	rating Pressure			
UTITLE	psi	bar	psi	bar	psi	bar	psi	bar
3/16	1,350	93	1,200	83	825	58]	
5/32	1,925	132	1,725	119	1,200	82	600	41
1/8	2,500	172	2.000	138	1.200	83	000	41
3/32	2,300	112	2,000	130	1,200	03		

26155G HLAR Maximun	n Operating Pres	sures								
Specific gravity	1.00 -	- 0.95	0.94 - 0.86		0.85 - 0.63		0.62 - 0.52			
Float weight, oz (g)	15.4	15.4 (437) 13.75 (390) 9.25 (262) 7.1 (201)								
Orifice		Maximum Operating Pressure								
UTITUE	psi	bar	psi	bar	psi	bar	psi	bar		
3/16	1,350	93	1,200	83	825	58				
5/32	1,925	132	1,725	119	1,200	82	600	41		
1/8	2.700	186	2.000	138	1.200	83	000	41		
3/32	2,700	100	2,000	130	1,200	03				

Armstrong Stainless Steel Thermostatic Air Vents

For Pressures to 300 psig (20 bar)...Capacities to 104 scfm

Armstrong offers Thermostatic Air Vents for positive venting of air and other non-condensable gases from steam in chamber type heat transfer equipment. Typical applications include jacketed kettles, retorts, vulcanizers, jacketed sterilizers or other contained equipment where air could accumulate in remote areas of the steam chamber and reduce heat transfer capacity. These vents are balanced pressure air vents that respond to the pressure-temperature curve of steam. Air is automatically vented at slightly below steam temperature throughout the entire operating pressure range.

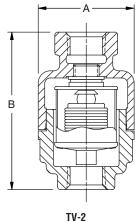
Features

- · Suitable for pressures from 0 300 psig
- · All 304-L stainless steel bodies-sealed, tamper-proof
- Balanced pressure thermostatic element vents air at slightly below steam temperature over the entire pressure range—no adjustments required
- Dependable, proven phosphor-bronze bellows caged in stainless steel with bronze valve and stainless steel seat
- · Available in straight-thru or right-angle connections

Armstrong thermostatic air vents should be installed at the highest point on a steam chamber, with the air vent located above the chamber. This will minimize the possibility of any liquid carryover, and air can be vented at atmosphere without a drain line.

For a fully detailed certified drawing, refer to CD #1018.

List of Materials	
Name of Part	Material
Body	304-L Stainless steel
Connections	304 Stainless steel
Balanced Pressure Thermostatic Air Vent	Stainless steel and bronze with phosphor-bronze bellows, entire unit caged in stainless steel
Gasket	Copper clad non-asbestos


Optional: All stainless steel thermostatic air vent.

Model No.	S	traight-Thru (Connections TTF	-1	Right-Angle Connections TTF-1R				
Pine Connections	in	mm	in	mm	in	mm	in	mm	
Pipe Connections	1/2	15	3/4	20	1/2	15	3/4	20	
"A" Diameter	2-1/4	57	2-1/4	57	2-1/4	57	2-1/4	57	
"B" Height	4-1/2	114	4-11/16	119	3-3/4	95	3-15/16	100	
"C" 🛯 inlet to face of outlet	_			2-5/8	67	2-13/16	71		
"D" € outlet to face of inlet	_		-		1-15/16	49	1-7/8	48	
"H"	_		_		3-1/16	78	3	76	
Weight, Ib (kg)	3/4 (0.4)	1(0.5)	3/4	(0.4)	1 (0).5)	
Maximum Allowable Pressure (Vessel Design)				300 psig @ 450°F	(20 bar @ 232°C)			
Maximum Operating Pressure, psi (bar)				300	(20)				
Discharge Orifice Size				3/*	16"				

TV-2 Thermostatic Air Vent

For Pressures to 125 psig (9 bar)...Capacities to 46 scfm

TV-2 Thermostatic Air Vent

Armstrong offers the Model TV-2 Balanced Pressure Thermostatic Air Vent for positive venting of air from chamber type heat transfer equipment with no loss of steam. Typical applications include jacketed kettles, retorts, vulcanizers, jacketed sterilizers or other contained equipment where air could accumulate at the top of the steam chamber and reduce heat transfer capacity.

The Model TV-2 is a balanced-pressure thermostatic air vent that responds to the pressure-temperature curve of steam at any pressure from light vacuum to maximum operating pressure. Air is automatically vented at slightly below steam temperature throughout the entire operating pressure range.

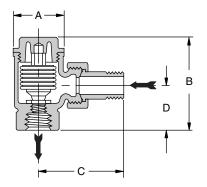
The thermostatic element is a charged multi-convolution phosphor bronze bellows caged in stainless steel. Valve and seat are also stainless steel designed to meet the most rigid cycling specifications known for this type of service.

TV-2 Physical Data		
Pipe Connections	in	mm
	1/2	15
"A" (Diameter)	2-3/16	56
"B" (Height)	3-1/2	89
Weight, Ib (kg)	1-1/2 (0.8)	
Maximum Operating Pressure	125 psig) (9 bar)
Temperature Maximum, °F (°C)	350°F (177°C)

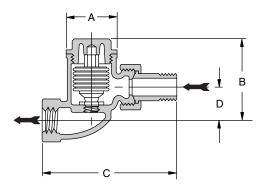
Features

- · Stainless steel hemispherical valve and seat
- Thermostatic element comprises a multi-convolution phosphor bronze bellows caged in stainless steel
- Thermostatic element is charged with water to provide positive opening of the valve at slightly below steam temperature and positive closing in the presence of steam throughout the operating pressure range
- ASTM B62 cast bronze body

Armstrong Model TV-2 Thermostatic Air Vents should be installed at the highest points of steam chambers with inlet connections to the vents higher than the highest points of the chambers. Thus installed there is a minimum hazard of any liquid carryover and air can be vented to atmosphere with no drain line necessary.


For a fully detailed certified drawing, refer to CD #1032.

TV-2 Materials	
Name of Part	Material
Body & Cap	Cast bronze ASTM B62
Gasket	Compressed non-asbestos
Thermostatic Unit	
Bellows	Phosphor bronze
Cage and Cover	Stainless steel
Thermostatic Unit Gasket	Copper clad


Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

465

TS-2 Air Vent Angle Type

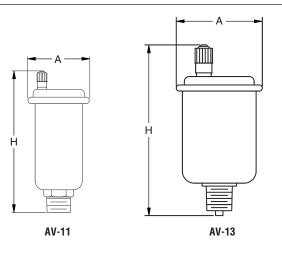
TS-2 Air Vent Straight Type

Armstrong TS thermostatic air vent is offered in both angle and straight patterns. The TS-2 has a balanced pressure thermostatic element with a high quality multiple-convolution bellows. It's ideal for venting air from equipment such as steam radiators and convectors, small heat exchangers, and unit heaters. The TS-2 comes with a strong, cast bronze body and a stainless steel seat. The valve and seat are renewable in-line.

Materials

Cap: Body: Union Nipple: Valve: Valve Seat: Element: Bronze, ASTM B62 Bronze, ASTM B62 Brass, ASTM B584 Brass Stainless steel Phosphor-bronze bellows

For a fully detailed certified drawing, refer to CDY #1045.


Model		TS-2										
Pattern		Ar	ngle			Str	aight					
Dina Connections	in	mm	in	mm	in	mm	in	mm				
Pipe Connections	1/2	15	3/4	20	1/2	15	3/4	20				
"A" Diameter	1-5/8	41	1-5/8	41	1-5/8	41	1-5/8	41				
"B" Height	2-15/16	75	3	76	2-11/16	68	2-7/8	73				
"С"	2-9/16	65	2-7/8	73	4	102	4-1/2	114				
"D"	1-3/8	35	1-5/8	41	1-1/8	28	1-5/16	33				
Weight, Ib (kg)	1-1/2 ((0.68)	1-3/4	(0.79)	1-1/2	2 (0	.91)					

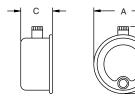
466

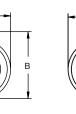
AV-11/AV-13 Air Vents

For Pressures to 150 psig (10 bar)

For Hot or Cold Water and Non-Viscous Liquids

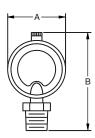
Air vent models AV-11 and AV-13 are compact float-type valves for the removal of air and other gases from hydronic heating and cooling systems, liquid chilling operations and other light liquid services.


Physical Data							
Model	AV-11		AV-13				
Connection Size	in	mm	in	mm	in	mm	
	1/8	3	1/2 Female	15 Female	3/4 Male	20 Male	
"A"	1-3/4	44	2-1/8	54	2-1/8	54	
"Н"	3-3/8	86	4-5/8	118	4-5/8	118	
Weight, Ib (kg)	1/4 (0.11)		1/2 (0.23)				


Capacities								
	AV-	11		AV-13				
	ΔΡ	Capa	cities	$\Delta \mathbf{P}$		Capacities		
psi	bar	cfm	m³/hr	psi	bar	cfm	m³/hr	
3.5	0.24	0.5	0.84	16	1.1	1	1.7	
10	0.69	1.0	1.7	48	3.3	2	3.4	
24	1.7	1.5	2.5	84	5.8	3	5.1	
35	2.4	1.9	3.2	120	8.3	4	6.8	
50	3.4	2.0	3.4	150	10	4.9	8.3	

Specificati	Specifications							
Model	Madal Application		Working Pressure		Maximum Temperature		Hydraulic Test Body	
Model Appl	Application	psi	bar	°F	°C	Connection	psig	bar
AV-11	AV-11 AV-13 Hot or Cold Water	1 - 50	0.06 - 3.4	210	99 NPT	NPT Screwed	200	14
AV-13		1 - 150	0.06 - 10.3	210		INF I SCIEWED	350	24

Materials					
Valve	Float	Disc			
Brass	Polypropylene	Nitrile			


Armstrong[®] SV-12 Steam Radiator Air Vent

SV-12 Angle Air Vent

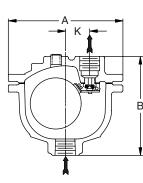
SV-12 Straight Air Vent

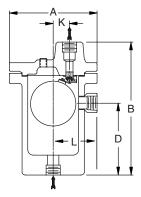
SV-12 Straight Main Air Vent

For Steam Service

A vent port size for every room location with the largest size for the coldest rooms and the smallest size for the "too hot" rooms. SV-12 air vents are easy to install on any steam radiator.

For a fully detailed certified drawing, refer to CDY #1042.


Materials	
Name of Part	Material
Body	Nickel plated brass
Float	Polypropylene
Valve Seat	Brass
Bimetal Thermostatic Element	Stainless steel


Pattern	Angle Con	inection	Straight Co	onnection	Straight Mair	n Connection	
Ding Connection Cize	in	mm	in	mm	in	mm	
Pipe Connection Size	1/8	3	1/8, 1/4	3, 6	1/2, 3/4	15, 20	
"A"	2-3/16	56	2-3/16	56	2-3/16	56	
"B"	2-5/16	59	3-1/4	83	3-1/2	89	
"C"	1-3/16	30	1-3/16	30	1-3/16	30	
Max. Operating Pressure, psi (bar)			15 (1)		· · · · · ·		
Vent Port Designation and Port Size	Each air	-	6 = .0935" C = .1285" .1850" n all five of the above vent	ports	1 = .1 Only one ve be pro	ent port will	

468

Fixed Pivot Ball Float Air/Gas Vents

For Pressures to 600 psig (41 bar) or Specific Gravity Down to 0.83

Model 21-AR

Model 21-312 AR/VAR

Physical Data							
Model No.	Cast	Iron	Forged Steel				
Model No.	21-/	AR	21-312 AR/VAR				
Pipe Connections	in	mm	in	mm			
	1/2, 3/4	15, 20	1/2, 3/4	15, 20			
"A"	6-3/16	157	6-3/4	171			
"B"	5-1/4	133	10-1/4	260			
"D"	-	-	5-9/16	141			
"К"	1-5/16	33	1-1/4	32			
"L"	-	-	3-5/16	84			
Approximate Weight, Ib (kg)	8 (4	4)	30 (14	4)			
Maximum Allowable Pressure (Vessel Design)	250 psi @ (17 bar @ 3		600 psig @ (41 bar @ 500 psig @ (34 bar @ 39	38°C) 750°F**			

**Viton valve seat insert limited to 400°F (204°C).

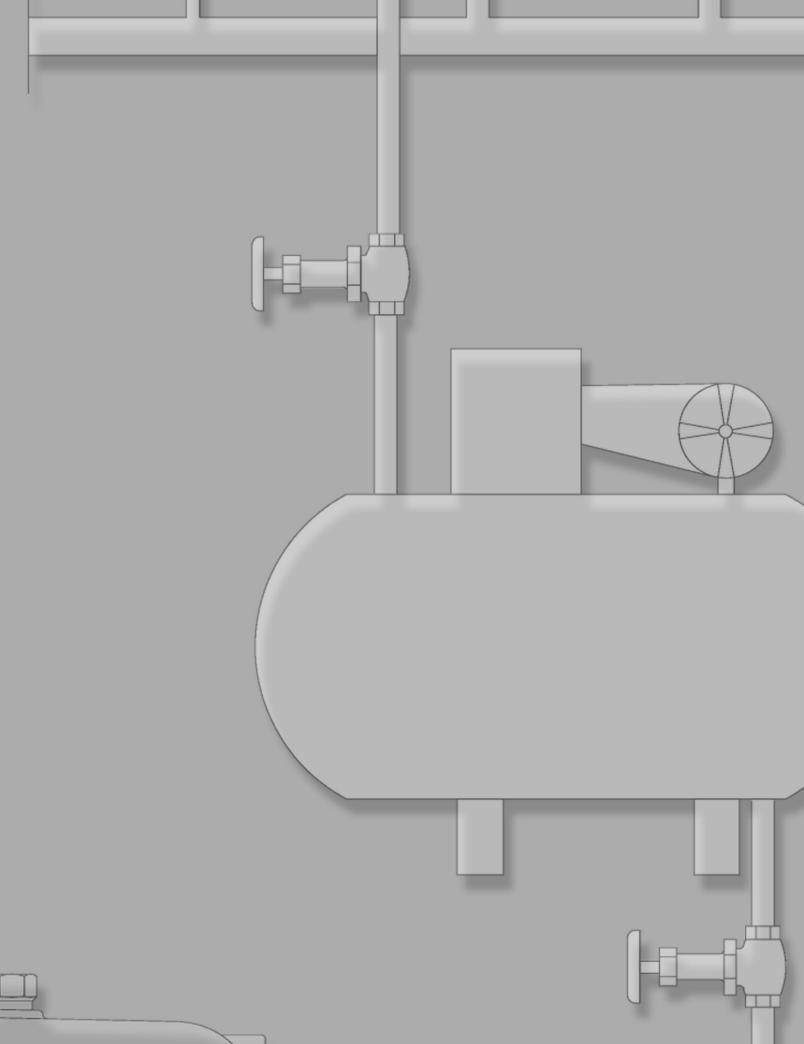
Minimum Onesitie Oresite	0	10	0.84				
Minimum Specific Gravity	0.	49	0.0	34			
Float Weight, oz (g)	2.25	(64)	4.12 (118)			
Orifice (in)	Max	imum Ope	rating Pres	sure			
office (III)	psi	bar	psi	bar			
7/32	17	1.2	-	-			
3/16	23	1.6	-	-			
5/32	33	2.3	-	-			
9/64	41	2.8	-	-			
1/8	52	3.6	-	-			
3/32	92	6.4	-	-			
5/64	133	9.2	-	-			
1/16	208	14	-	-			
1/16	-	-	250	17			

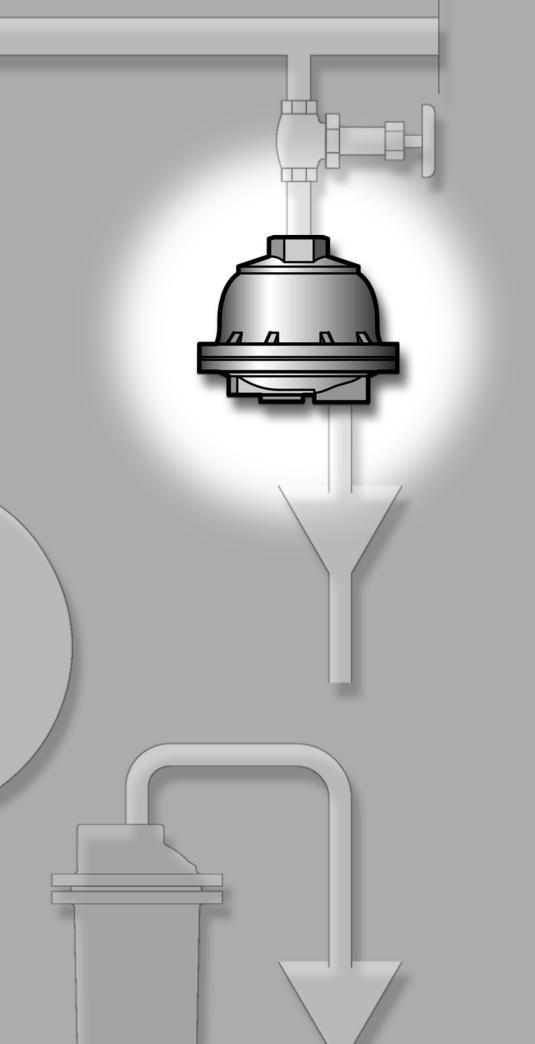
21-AR—A small, high-quality economical air vent. It employs a single lever with a fixed pivot and viton seat, ensuring a tight shut-off.

For a fully detailed certified drawing, refer to CD #1037.

21-312 AR/VAR — Forged steel version of the Model 21 with a larger float and higher leverage. Available with screwed, socketweld or flanged connections.

For a fully detailed certified drawing, refer to CD #1106.


21-312 AR/VAF	Maximum Operating Pressures					
	Minimum Specific Gravity	8.0	33			
	Float Weight, oz (g)	5 (143)				
Model	Orifice (in)	Maximum Press				
		psi	bar			
	1/4	22	1.5			
	7/32	28	1.9			
21-312AR	3/16	38	2.7			
	5/32	55	3.8			
	9/64	68	4.7			
	1/8	173	12			
21-312VAR	3/32	308	21			
21-912VAN	5/64	443	31			
	1/16	600	41			


List of Materials							
Model No.	Valve	Seat	Leverage System	Float	Body & Cap	Gasket	Bolting
21-AR		Stainless Steel	ASTM A48 Class 30 Cast Iron	Bolts SAE Gr. 2 Nuts ASTM A563 Gr. A			
21-312 AR 21-312 VAR	Stainless Steel	with *Viton Insert	Stainless Steel	Stainless Steel	ASTM A105 Forged Steel	Non-Asbestos	Bolts and Nuts ASTM B633 Type 1

NOTE: Above vents available in T-316 SS bodies and caps and all SS internals. Aluminum body and cap available for Model 21-AR only. *Other seat insert materials available. Consult factory.

1-LD Cast Iron Free Floating Lever Drain Trap 11-LD Stainless Steel Free Floating Lever Drain Trap

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Liquid Drainers ID Charts

Armstrong Liqui	d Drainers												•		
			_	Max.				Max.		(Conne	ection S	ize		Located
Illustration	Туре	Flow Direction	Connection Type	Allow. Press. psig	°F	Body Material	Model	Oper. Press. psig	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	on Page
	Series 1-LDC See-Thru Free Floating Lever Drain Traps Capacities to 1,500 lb/hr		Screwed	150	150	Nylon Cap Polysulfone Body	1-LDC	150	•	**					502
	Series 1-LDCW See-Thru Free Floating Lever Drain Traps for Ozone Applications		Screwed	150	150	PBT Cap (Polybutylene Terephthalate) Polysulfone Body	1-LDCW			**					505
	Series 200 BVSW Inverted Bucket Drain Traps Capacities to 7,000 lb/hr	•	Screwed	250	450	ASTM A48 Class 30 Cast Iron	211 212 213	250	•	•	•				506
	Series 800 BVSW Inverted Bucket Drain Traps Capacities to 7,000 lb/hr		Screwed	250	450	ASTM A48 Class 30 Cast Iron	800 811 812 813	150 250 250 250	•	• • •	•				506
	Series 880 BVSW Inverted Bucket Drain Traps Capacities to 7,000 lb/hr		Screwed	250	450	ASTM A48 Class 30 Cast Iron	880 881 882 883	150 250 250 250	•	• • •	•				
	Series 300 BVSW Inverted Bucket Drain Traps Capacities to 7,000 lb/hr	A	Screwed Socketweld Flanged†	600 1,080	650 650	ASTM A105 Forged Steel	312 313	600	•	•	•				506
	Series 900 BVSW Inverted Bucket Drain Traps Capacities to 7,000 lb/hr		Screwed Socketweld Flanged†	600	650	ASTM A216 WCB Cast Steel	981 983	300 600	•	•	•				
	Series 1, 2, 3, 6 Free Floating Lever			300	200		1-LD	300	*						
	Drain Traps Capacities to 49,000 Ib/hr		Screwed	250	450	ASTM A48 Class 30 Cast Iron	2-LD 3-LD 6-LD	250	•	•	•		•	•	509

★ 1/4" outlet connection

★ ★ 1/2" outlet connection

+ Flange selection may limit pressure and temperature rating.

tt Side connection not available.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

LD-2

Armstrong[®] Liquid Drainers ID Charts

Armstrong Liqui	d Drainers														
Illustration	Turne	Flow	Connection	Max. Allow.	ТМА	Body	Madal	Max. Oper.			Conn	ection Si	ze		Located
Illustration	Туре	Direction	Туре	Press. psig	°F	Material	Model	Press. psig	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	on Page
	Series 11, 22, 13 Free Floating Lever Drain Traps		Screwed Socketweld	500 or 440	100 or 500		11-LD††	400	•	**					
			Screwed Socketweld	600 or 475	100 or 500	304-L Stainless Steel	22-LD	533		•					510
	Capacities to 9,500 lb/ hr	*	(22 and 13 Series Only)	570 or 490	100 or 500		13-LD	570			•				
	180-LD/181-LD Free Floating Lever Drain Traps		Screwed Socketweld	500 or 440	100 or	304L Stainless Steel	180-LD	229	•						512
	Capacities to 1,100 Ib/hr		Constructu		500		181-LD	350		•					
	Series 30 Free Floating Lever Drain Traps			600 or 500	100 or 750		32-LD	600	•	•	•				
			Screwed Socketweld Flanged†	1,000 or 600	100 or 750	ASTM A105 Forged Steel	33-LD	900	•	•	•				511
	Capacities to 42,000 Ib/hr	*	•		,000 or 600 750		36-LD	1,000					•	•	
	Series 21 Fixed Pivot Drain Trap Capacities to 2,700 lb/ hr	↓ ▼	Screwed	250	450	ASTM A48 Class 30 Cast Iron	21	250	•	•					
	Series 21-312 Fixed Pivot Drain Traps Capacities to 3,900 lb/ hr		Screwed Socketweld Flanged†	600 or 500	100 or 750	ASTM A105 Forged Steel	21-312 21-312V	74 600	•	•	•				
	Series 71-A Snap Action Drain Trap Capacities to 1,950 lb/ hr		Screwed	250	450	ASTM A48 Class 30 Cast Iron	71-A	250		•	•				514
	Series 71-315 Snap Action Drain Trap Capacities to 1,950 lb/ hr		Screwed Socketweld Flanged†	1,000 or 600	100 or 750	ASTM A105 Forged Steel	71-315	1,000		•	•	•			
	Series 2300 High Leverage Spring- Loaded Float Type Drain Trap Capacities to 14,500		Screwed Socketweld Flanged†	1,000 or 600	100 or 750	ASTM A105 Forged Steel	2313-HLS 2315-HLS 2316-HLS	1,000	•	•	•	•	•	•	516

† Flange selection may limit pressure and temperature rating.

Liquid Drainers ID Charts

Armstrong Liqu	id Drainers							l																			
			0	Max.				Max.				Connec	tion Size	•													
Illustration	Туре	Flow Direction	Connection Type	Allow. Press. psig	TMA °F	Body Material	Model	Oper. Press. psig	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	2-1/2"	3"	Located on Page										
	Series 2400 High Leverage Spring-Loaded		Screwed	1,500 or 900	100 or 850	ASTM	2413-HLS	1,500	•	•	•						516										
	Float Type Drain Traps Capacities to		Socketweld Flanged†	1,800 or 900	100 or	A182 Gr. F22 Forged Steel	2415-HLS	1,800			•	•	•				516										
	16,250 lb/hr			01 900	900		2416-HLS	1,800					•	•													
	Series 2500/2600 High Leverage Spring-Loaded			2,120 or 1,700	100 or 900	AOT14	25133G HLS	2,120		•	•	•															
	Float Type Drain Traps		Screwed Socketweld Flanged†	2,520 or 2,000	100 or 900	ASTM A182 Gr. F22 Forged Steel	25155G HLS	2,520			•	•	•				516										
	Capacities to 11,000 lb/hr	*		3,700 or 3,000	100 or 900		26155G HLS	3,700				•	•														
	Series 2, 3, 6 Free Floating Lever Dual						2-DG	190	•	•																	
	Gravity Drain Traps Capacities to		Screwed	250	450	ASTM A48 Class 30 Cast Iron	3-DG	250		•	•																
	40,000 lb/hr	•					6-DG	250					•	•													
	Series 30 Free Floating Lever Dual			600 or 500	100 or 750		32-DG	325	•	•	•						518										
	Gravity Drain Traps Capacities to		•	V	•	•	•	•	•	•	•	V	Screwed Socketweld Flanged†	1,000 or 600	100 or 750	ASTM A105 Forged Steel	33-DG	700		•	•						
	40,000 lb/hr													•	•	+	•		1,000 or 600	100 or 750		36-DG	1,000				
	Series JD&KD Ultra-Capacity					AOTNA 4005	JD8							•													
	Drain Traps Capacities to		Screwed	300	650	ASTM A395 Ductile Iron	KD8 KD10	300*						•	•												
	302,000 lb/hr					11011	KD12									•											
	Series L&M Ultra-Capacity	7				ASTM A48	L8							•													
	Drain Traps Capacities to		Screwed	250	450	Class 30 Cast Iron	L10	250*							•		520										
- We	700,000 lb/hr						M12									•											
	Series LS&MS Ultra-Capacity Drain Traps		Screwed			ASTM	LS8							•													
	Capacities to		Socketweld Flanged†	450	650	A216 WCB Cast Steel	L\$10	450*							•												
Jelle -	700,000 lb/hr		. langou j				MS12									•											
	ADP-1 Pneumatically Operated Liquid Drainer Capacities to 1.5 lb liquid per		Screwed	180	150	Aluminum ASTM B221 6061- T6511	ADP-1	180		•							524										
+= 1100	cycle																										

*For different specific gravities, see table LD-33 on page LD-49. +Flange selection may limit pressure and temperature rating. Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Armstrong[®] Bringing Energy Down to Earth

Say energy. Think environment. And vice versa.

Any company that is energy conscious is also environmentally conscious. Less energy consumed means less waste, fewer emissions and a healthier environment.

In short, bringing energy and environment together lowers the cost industry must pay for both. By helping companies manage energy, Armstrong products and services are also helping to protect the environment.

Armstrong has been sharing know-how since we invented the energy-efficient inverted bucket steam trap in 1911. In the years since, customers' savings have proven again and again that knowledge *not* shared is energy wasted.

Armstrong's developments and improvements in drain trap design and function have led to countless savings in energy, time and money. This section has grown out of our decades of sharing and expanding what we've learned. It deals with the operating principles of drain traps and outlines their specific applications to a wide variety of products and industries.

This section also includes Recommendation Charts that summarize our findings on which type of drain trap will give optimum performance in a given situation and why.

Terminology

Drain traps, as described in this section, have many other names in industry. A drain trap is an automatic loss prevention valve that opens to discharge liquids and closes to prevent air or gas loss. In industry, drain traps are also known as:

- Compressed air drains
- Dump valves
- Condensate drainers
- Air traps
- Water traps
- Float traps
- Liquid drainers
- Compressed air traps

This section should be utilized as a guide for the installation and operation of drain trapping equipment by experienced personnel. Selection or installation should always be accompanied by competent technical assistance or advice. We encourage you to contact Armstrong or its local representative for complete details.

Instructions for Using the Recommendation Charts

Quick reference Recommendation Charts appear throughout the "HOW TO DRAIN" pages of this section, pages LD-17 to LD-28.

A feature code system (ranging from A to N) supplies you with "at-a-glance" information.

The chart covers the type of drain traps and the major advantages that Armstrong feels are superior for each particular application.

For example, assume you are looking for information concerning the proper trap to use on an aftercooler. You would:

1. Turn to the "How to Drain Aftercoolers" section, pages LD-21 and LD-22, and look in the lower left-hand corner of page LD-21. (Each application has a Recommendation Chart.) The Recommendation Chart LD-7 from page LD-21 is reprinted below as Chart LD-1 for your convenience.

Chart LD-1. Recommendation Chart (See below for "Feature Code" references.)											
Equipment Air Gas											
Being Drained	1st Choice and Feature Code	Alternate Choice	1st Choice and Feature Code	Alternate Choice							
Aftercooler	IB	FF	*FF	FP							
Intercooler	F, G, J, K, M	ГГ	B, E, J	ГГ							

*Since IBs vent gas to operate, an FF is suggested because gas venting may not be

- Find "Aftercooler" in the first column under "Equipment Being Drained" and read to the right for Armstrong's "1st Choice and Feature Code". In this case, the first choice is an IB and the feature code letters F, G, J, K, M are listed.
- **3.** Now refer to the chart below, titled **"How Various Types of Drain Traps Meet Specific Operating Requirements"** and read down the extreme left-hand column to each of the letters F, G, J, K, M. The letter "F," for example, refers to the trap's ability to handle oil/water mix.
- 4. Follow the line for "F" to the right until you reach the column that corresponds to our first choice, in this case the inverted bucket. Based on tests, actual operating conditions, and the fact that the discharge is at the top, the inverted bucket trap handles oil/water mixtures extremely well. Follow this same procedure for the remaining letters.

Feature Code	Characteristic	IB	FF	FP	FS	D	тν	MV
Α	Method of Operation (Intermittent-Continuous)		С	С		I	I	С
В	Energy Conservation in Operation	Good	Excellent	Excellent	Excellent	Fair	Poor	Excellent
С	Energy Conservation Over Time	Good	Excellent	Excellent	Excellent	Poor	Fair	Poor (5)
D	Resistance to Wear Fair	Excellent	Excellent	Fair	Good	Poor	Good	Excellent
E	Corrosion Resistance	Excellent						
F	Ability to Handle Oil/Water Mix	Excellent	Fair	Fair	Fair	Good	Excellent	Excellent
G	Ability to Prevent Sludge Buildup	Excellent	Poor	Poor	Fair	Good	Good	Excellent
Н	Resistance to Damage from Freezing (1)	Good (2)	Poor	Poor	Poor	Good	Fair	Good
1	Performance to Very Light Loads	Good	Excellent	Excellent	Excellent	Poor	Poor	Poor
J	Responsiveness to Slugs of Liquid (3)	Good	Excellent	Excellent	Excellent	Poor	Poor	Poor
Κ	Ability to Handle Dirt	Excellent	Fair	Fair	Excellent	Poor	Excellent	Good
L	Comparative Physical Size	Large	Large	Large	Large	Small	Small	Small
М	Mechanical Failure (Open-Closed)	Open	Closed	Closed	Closed	Open	(4)	(4)
Ν	Noise Level of Discharge (Loud-Quiet)	Quiet	Quiet	Quiet	Quiet	Loud	Loud	(4)

- IB = Inverted Bucket
- FF = Float-Free Linkage
- FP = Float-Fixed Pivot Linkage
- FS = Float-Snap Acting Linkage
- D = Disc

desirable.

- TV = Timed Solenoid Valve
- MV = Manual Valve

- (1) Cast iron not recommended.
- (2) Sealed stainless steel = good.
- (3) Float traps should be back vented = excellent.
- (4) Can be either.
- (5) Usually end up "cracked open."

iquid Drainers.

Armstrong[®] Compressed Air/Gases—Basic Concepts

Moisture is always present in compressed air, and oil can be present at some points in a compressed air system. For the efficient operation and long life of gaskets, hoses and air tools, this excess moisture and the oil must be removed from the system.

The removal of moisture and oil from a system involves more than just traps. To maintain high efficiency and avoid costly problems, a compressed air system also requires:

- 1. Aftercoolers to bring the compressed air down to ambient or room temperature.
- Separators to knock down suspended droplets of water or fog. Separators are installed downstream from aftercoolers or in air lines near point of use, or both.
- 3. Drain traps to discharge the liquid from the system with a minimum loss of air.

lable LD-1. W	leight of Wate	er Per Cubic Fo	oot of Air at Va	rious Tempera	itures					
Temp. °F					Percentage	of Saturation				
тешр. г	10	20	30	40	50	60	70	80	90	100
	Grains	Grains	Grains	Grains	Grains	Grains	Grains	Grains	Grains	Grains
-10	.028	.057	.086	.114	.142	.171	.200	.228	.256	.285
0	.048	.096	.144	.192	.240	.289	.337	.385	.433	.481
10	.078	.155	.233	.310	.388	.466	.543	.621	.698	.776
20	.124	.247	.370	.494	.618	.741	.864	.988	1.112	1.235
30	.194	.387	.580	.774	.968	1.161	1.354	1.548	1.742	1.935
32	.211	.422	.634	.845	1.056	1.268	1.479	1.690	1.902	2.113
35	.237	.473	.710	.946	1.183	1.420	1.656	1.893	2.129	2.366
40	.285	.570	.855	1.140	1.424	1.709	1.994	2.279	2.564	2.849
45	.341	.683	1.024	1.366	1.707	2.048	2.390	2.731	3.073	3.414
50	.408	.815	1.223	1.630	2.038	2.446	2.853	3.261	3.668	4.076
55	.485	.970	1.455	1.940	2.424	2.909	3.394	3.879	4.364	4.849
60	.574	1.149	1.724	2.298	2.872	3.447	4.022	4.596	5.170	5.745
62	.614	1.228	1.843	2.457	3.071	3.685	4.299	4.914	5.528	6.142
64	.656	1.313	1.969	2.625	3.282	3.938	4.594	5.250	5.907	6.563
66	.701	1.402	2.103	2.804	3.504	4.205	4.906	5.607	6.308	7.009
68	.748	1.496	2.244	2.992	3.740	4.488	5.236	5.984	6.732	7.480
70	.798	1.596	2.394	3.192	3.990	4.788	5.586	6.384	7.182	7.980
72	.851	1.702	2.552	3.403	4.254	5.105	5.956	6.806	7.657	8.508
74	.907	1.813	2.720	3.626	4.533	5.440	6.346	7.253	8.159	9.066
76	.966	1.931	2.896	3.862	4.828	5.793	6.758	7.724	8.690	9.655
78	1.028	2.055	3.083	4.111	5.138	6.166	7.194	8.222	9.249	10.277
80	1.093	2.187	3.280	4.374	5.467	6.560	7.654	8.747	9.841	10.934
82	1.163	2.325	3.488	4.650	5.813	6.976	8.138	9.301	10.463	11.625
84	1.236	2.471	3.707	4.942	6.178	7.414	8.649	9.885	11.120	12.326
86	1.313	2.625	3.938	5.251	6.564	7.877	9.189	10.502	11.814	13.137
88	1.394	2.787	4.181	5.575	6.968	8.362	9.756	11.150	12.543	13.997
90	1.479	2.958	4.437	5.916	7.395	8.874	10.353	11.832	13.311	14.780
92	1.569	3.138	4.707	6.276	7.844	9.413	10.982	12.551	14.120	15.639
94	1.663	3.327	4.990	6.654	8.317	9.980	11.644	13.307	14.971	16.624
96	1.763	3.525	5.288	7.050	8.813	10.576	12.338	14.101	15.863	17.676
98	1.867	3.734	5.601	7.468	9.336	11.203	13.070	14.937	16.804	18.661
100	1.977	3.953	5.930	7.906	9.883	11.860	13.836	15.813	17.789	19.766

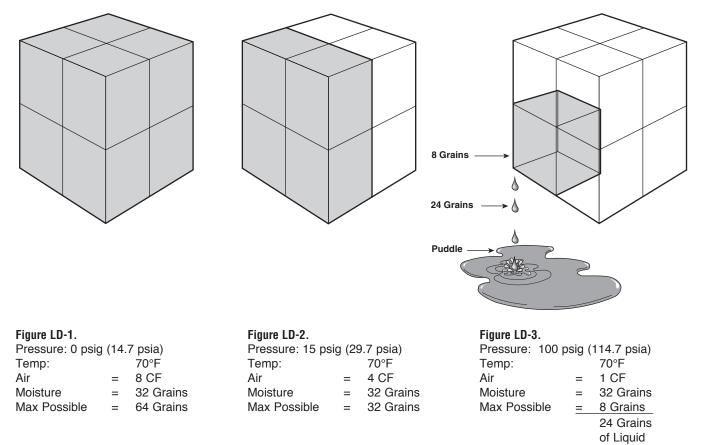
Based on atmospheric pressure of 14.7 psia.

Compressed Air/Gases—Basic Concepts

Water carried with air into tools or machines where air is being used will wash away lubricating oil. This causes excess wear to motors and bearings and results in high maintenance expense. Without adequate lubrication, the tools and machines run sluggishly and their efficiency is lowered. This effect is particularly pronounced in the case of pneumatic hammers, drills, hoists and sand rammers, where the wearing surfaces are limited in size and the excessive wear creates air leakage.

Where air is used for paint spraying, enameling, food agitation and similar processes, the presence of water and/or oil cannot be tolerated, nor can particles of grit or scale. In instrument air systems, water will tend to cling to small orifices and collect dirt, causing erratic operation or failure of sensitive devices.

Pipeline Troubles


When water accumulates at low points in the pipeline, the air-carrying capacity of the line is reduced. Eventually, airflow over the pool of water will begin to carry the water along at high velocity. This produces "water hammer" along the line, and may even carry over a slug of water into a tool. In cold weather, accumulations of water may freeze and burst pipelines.

Air's Capacity to Hold Moisture

At atmospheric pressure (14.7 psia), 8 cu ft of air with an RH of 50% and a temperature of 70°F will contain 32 grains of moisture vapor.

When the pressure is doubled (without increasing the temperature) the volume is cut in half (4 cu ft), but there are still 32 grains of moisture. This means the relative humidity is now 100%—all the moisture in vapor form that it can handle.

Increasing the pressure to 100 psig (114.7 psia), the volume of air is further reduced to approximately 1 cu ft. This 1 cu ft of compressed air still at 70°F can hold a maximum eight grains of moisture.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Armstrong[®] Compressed Air/Gases—Basic Concepts

Drainage Problems and How to Avoid Them

Oil. A critical drainage problem exists at points where oil may be present in the compressed air (principally at intercoolers, aftercoolers and receivers).

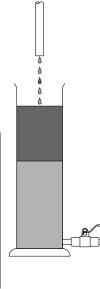
Two facts create this problem:

- 1. Oil is lighter than water and will float on top of water.
- 2. Compressor oil when cooled tends to become thick and viscous.

The beaker simulates any drain trap that has its discharge valve at the bottom, Fig. LD-4. Like the beaker, the trap will fill with heavy oil that may be thick and viscous.

Compare with Fig. LD-5, which shows an identical beaker except that the discharge valve is at the same level as the oil. Oil will escape until the oil level is so thin that for every 19 drops of water and one of oil that enter the beaker, exactly 19 drops of water and one drop of oil will leave. The beaker always will be filled with water.

The conclusion is obvious. When there is an oil-water mixture to be drained from an air separator or receiver, use a trap with the discharge valve at the top.


Dirt and Grit. While scale and sediment is seldom a problem between the compressor and receiver, it is encountered in the air distribution system, particularly when the piping is old. In this situation, scale will be carried to a drain trap along with the water. If the drain trap is not designed to handle dirt and grit, the trap may fail to drain water and oil, or the trap valve may not close.

Air Loss. Often in compressed air systems, the solution to one problem may also cause another problem. For example, a common method of draining unwanted moisture is to crack open a valve; however, this also creates a leak. The immediate problem is solved, but the "solution" has an obvious, and usually underestimated, cost of continual air loss.

How much air is lost depends on orifice size and line pressure (see Table LD-2). The overall result is a decrease in line pressure, the loss of up to a third of the system's compressed air, and the cost of compressing it.

Leak control involves:

- Looking for leaks during shut-down with an ultrasonic leak detector
- Determining total leakage by observing how fast pressure drops with the compressor off, both before and after a leak survey
- Fixing leaks at joints, valves and similar points
- Replacing cracked-open valves with drain traps
- Checking the system regularly

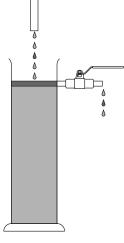
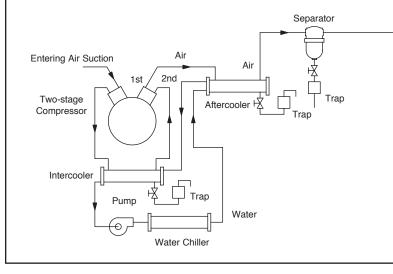


Figure LD-4. If a beaker collecting oil and water is drained from the bottom at the same rate that oil and water enter, it will eventually fill entirely with oil because oil floats on water.


Figure LD-5. If a beaker collecting oil and water is drained from the top at the same rate that oil and water enter, it

floats on the water.

soon will be entirely filled

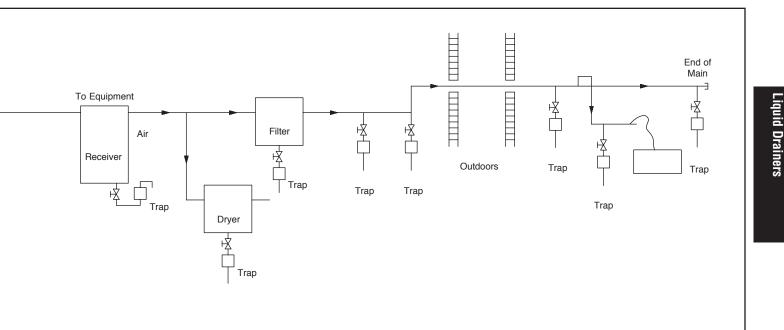
with water because the oil

Figure LD-6. Drain Trap Locations in a Compressed Air System The use of drain traps is an effective way to remove water that collects in many places in a compressed air system. Each trap location must be considered individually.

Drainage Methods

Manual. Liquid may be discharged continuously through cracked-open valves, or periodically by opening manually operated drain valves.

Open drains are a continuous waste of air or gas—and the energy to produce it. A valve manually opened will be left open until air blows freely. Frequently, however, the operator will delay or forget to close the valve, and precious air or gas is lost.


Automatic. Automatic drainage equipment that is adequate for the system is seldom included in the original system. However, subsequent installation of automatic drain traps will significantly reduce energy and maintenance costs.

Drain Traps. Water collected in separators and drip legs must be removed continuously without wasting costly air or gas. In instances where drain traps are not part of the system design, manual drain valves are usually opened periodically or left cracked open to drain constantly. In either case, the valves are opened far enough that some air and gas are lost along with the liquid. To eliminate this problem, a drain trap should be installed at appropriate points to remove liquid continuously and automatically without wasting air or gas.

The job of the drain trap is to get liquid and oil out of the compressed air/gas system. In addition, for overall efficiency and economy, the trap must provide:

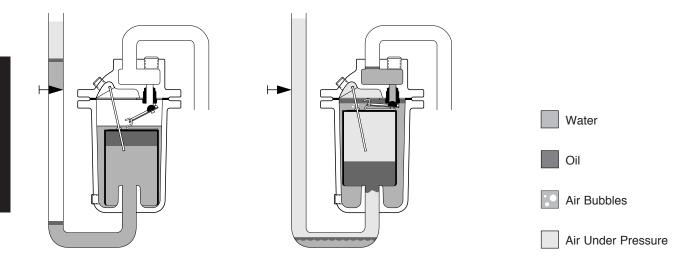
- Operation that is relatively trouble-free with minimal need for adjustment or maintenance
- Reliable operation even though dirt, grit and oil are present in the line
- Long operating life
- Minimal air loss
- Ease of repair

Table LD-2. Cost of Various Size Air Leaks at 90 psig			
Orifice Diameter (in)	Leakage Rate (scfm)	Total Cost Per Month	Cost Total Per Year
3/8	138.00	\$1,207.50	\$14,490
1/4	61.00	533.75	6,405
1/8	15.40	134.75	1,617
7/64	11.80	103.25	1,239
5/64	6.00	52.50	630
1/16	3.84	33.60	403

For Heavy Oil/Water Service

BVSW inverted bucket drain traps are designed for systems with heavy oil or water services.

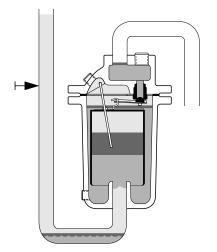
An inverted bucket is used because the discharge valve is at the top, so oil is discharged first and the trap body is almost completely filled with water at all times.

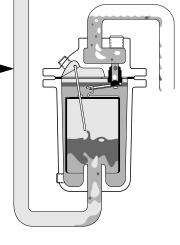

BVSW stands for Bucket Vent Scrubbing Wire. This 1/16" dia. wire swings freely from the trap cap and extends through the bucket vent. Its function is to prevent reduction of vent size by buildup of solids or heavy oil in the vent itself. The up-and-down motion of the bucket relative to the vent scrubbing wire keeps the vent clean and full size.

Operation of Inverted Bucket Drain Traps

- Since there is seldom sufficient accumulation of water to float the bucket and close the valve, the trap must be primed on initial start-up or after draining for cleaning. Step 1 shows "after operating" primed condition with oil in the top of bucket and a very thin layer of oil on top of water in the trap body.
- 2. When valve in line to trap is opened, air enters bucket, displacing liquid. When bucket is two-thirds full of air, it becomes buoyant and floats. This closes the discharge valve. As bucket rises, the vent scrubbing wire removes oil and any dirt from bucket vent.

Both liquid and air in trap are at full line pressure, so no more liquid or air can enter trap until some liquid or air escapes through the discharge valve. Static head forces air through bucket vent. The air rises to top of trap and displaces water that enters bucket at bottom to replace air that passes through vent. Just as soon as bucket is less than two-thirds full of air, it loses buoyancy and starts to pull on valve lever as shown in Step 3.

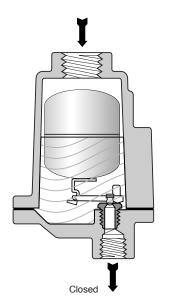

Figure LD-7. Operation of the BVSW Inverted Bucket Drain Trap

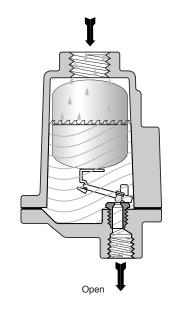

- 1. Trap primed, air off, bucket down, trap valve open.
- 2. Trap in service, bucket floating. Air passes through bucket vent and collects at top of trap.

- 3. Note that liquid level at top of trap has dropped and the liquid level in the bucket has risen. The volume of water displaced by air exactly equals the volume of water that entered the bucket. During this valve-closed part of the operating cycle—Steps 2 and 3—water and oil are collecting in the horizontal line ahead of the trap. When the bucket is about two-thirds full of liquid, it exerts enough pull on lever to crack open the discharge valve.
- 4. Two things happen simultaneously. a) The accumulated air at top of trap is discharged immediately, followed by oil and any water that enters the trap while the valve is cracked. b) Pressure in trap body is lowered slightly, allowing accumulated liquid in horizontal line to enter the trap. Air displaces liquid from the bucket until it floats and closes the discharge valve, restoring the condition shown in Step 2.
- 5. When full buoyancy is restored, the trap bucket is twothirds full of air. Oil that has entered while trap was open flows under bottom of bucket and rises to top of water in trap body. The trap normally discharges small quantities of air several times per minute.

 Water enters bucket to replace air passing through bucket vent. This increases weight of bucket until...

- ...pull on lever cracks valve. Air at top of trap escapes, followed by oil and water. Liquid in pipe ahead of trap enters bucket followed by air.
- 5. Air displaces liquid and excess oil from bucket, restoring condition shown in Step 2.

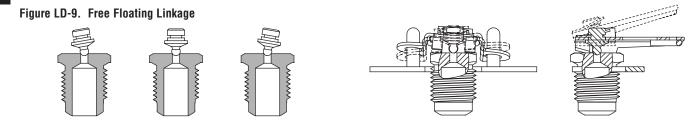

Closed Float


Hollow, thin-wall metal floats are attached through linkages to valves at the trap bottom, and a seat with an appropriately sized orifice is inserted at the trap outlet. Floats are selected to provide adequate buoyancy to open the valve against the pressure difference. Discharge usually is to atmosphere, so the pressure drop is equal to the system air pressure. The float and linkage are made of stainless steel, and the valve and seat are hardened stainless steel for wear resistance and long life. The body is cast iron, stainless steel, or cast or forged steel depending on gas pressure. Bodies may be made of stainless steel to resist corrosive gas mixtures.

Entering liquid drops to the bottom of the body. As liquid level rises, the ball is floated upward, thereby causing the valve to open sufficiently that outlet flow balances inlet flow. Subsequent change of incoming flow raises or lowers water level further opening or throttling the valve. Thus discharge is proportionally modulated to drain liquid completely and continuously. However, gas flow may be constant or it may abruptly change depending on system demand characteristics. Liquid formation may be sporadic, or the nature of flow generation may cause surges. At times, flow will be very low, requiring operation to throttle the flow or even tight shut-off. Tightness of closure, gas leakage and trap cost will depend on the design of linkage and valve.

Free Floating Lever

The discharge from the No. 1-LD is continuous. The opening of the valve is just wide enough to remove the liquid as fast as it comes to the trap. Thus, at times, the valve is barely cracked from its seat.


Figure LD-8. Operation of the No. 1-LD Free Floating Lever Drain Trap As water begins to fill the body of the trap, the float rises, opening the discharge valve. Motion of the free floating valve lever is guided to provide precise closure.

Water

id Drainers

Free Floating Linkage Valve

A hemispherical ball-shaped valve is attached to linkage which is suspended freely on two guide pins. There is no fixed pivot or rigid guides; therefore, the attachment is loose. There are no critical alignments, and the lever and valve may move in all directions. Consequently, the lever may move the valve to the seat in any alignment. As the valve approaches the seat, the pressure pushes the round valve into the square edge orifice of the seat, effecting a line seal to attain bubble-tight closure.

Fixed Pivot Conical Valve

A conically shaped valve is attached to a fixed pivot leverage system. The fixed pivot does not allow the valve to move

freely to conform to the seat for tight closure. Thus, it may not seal tightly, and some loss of air or gas may be expected.

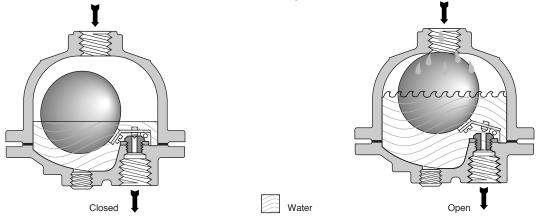
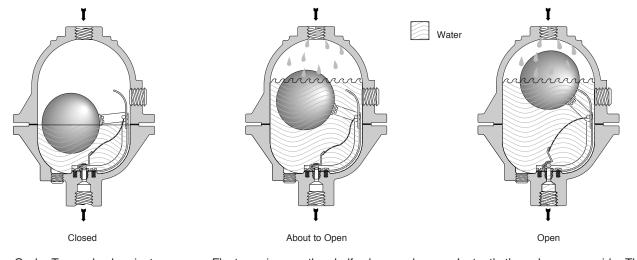



Figure LD-10. Operation of No. 21 Fixed Pivot Drain Trap

As the water level rises, the ball float cracks the valve to drain liquid at the same rate that it reaches the trap. Changes in the rate of flow to the trap adjust the float level and the degree of opening of the valve.

Snap Action Valve

Because of the sporadic liquid flow, much of the time the valve in a standard float-type drainer is only slightly opened. If there is fine dirt or grit in the liquid, particles may accumulate and clog the partially open valve, or they may lodge between the valve and seat, preventing closure. To overcome this, a special toggle-spring operated valve is used. A flat spring attached to the leverage system holds the valve closed until liquid level is high enough for the buoyancy to exceed the spring force. Then the valve is snapped open, and the accumulated dirt and grit can be flushed through the wide open valve. When the body is nearly empty, buoyancy is reduced enough to permit the spring to snap the valve closed.

Figure LD-11. Operation of No. 71-A Snap Action Drain Trap

Filling Cycle. Trap valve has just closed. Spring bowed to right. Float rides high in water because no force is exerted on spring. As water enters, float rises, storing energy in spring. This increases submergence of float. Float now is more than half submerged and spring has assumed a "handlebar mustache" shape. Energy stored in spring is due to increased displacement of water. A very slight rise in water level causes spring to snap to the left... ...Instantly the valve opens wide. This releases energy from spring and float again rides high in water. As water level drops, weight of float bends spring to right, causing snap closing of valve before all the water has been discharged.

Liquid Drainers

To obtain the full benefits from the traps described in the preceding section, it is necessary that the correct size and pressure of drain trap be selected for each job, and that it be properly installed and maintained.

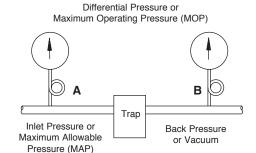
Rely on Experience. Most drain traps are selected on the basis of experience. This may be:

- Your personal experience
- The experience of your Armstrong Representative or distributor
- The experience of thousands of others in draining identical equipment

Do-It-Yourself Sizing is required at times. Fortunately, drain trap sizing is simple when you know or can figure:

- 1. Liquid loads in lbs/hr.
- 2. Pressure differential.
- 3. Maximum allowable pressure.

1. Liquid Load. Each "How To" section of this handbook contains formulas and useful information on proper sizing procedures and safety factors.


2. Pressure Differential. Maximum differential is the difference between main pressure, or the downstream pressure of a PRV, and return line pressure. See Fig. LD-12. The drain trap must be able to open against this pressure differential.

Operating differential. When the plant is operating at capacity, the pressure at the trap inlet may be lower than main pressure. And the pressure in the return header may go above atmospheric.

If the operating differential is at least 80% of the maximum differential, it is safe to use maximum differential in selecting traps.

IMPORTANT: Be sure to read the discussion on page LD-16, which deals with less common, but important, reductions in pressure differential.

3. Maximum Allowable Pressure. The trap must be able to withstand the maximum allowable pressure of the system, or design pressure. It may not have to operate at this pressure, but it must be able to contain it. As an example, the maximum inlet pressure is 150 psig and the return line pressure is 15 psig. This results in a differential pressure of 135 psi; however, the trap must be able to withstand 150 psig maximum allowable pressure. See Fig. LD-12.

Figure LD-12. "A" minus "B" is Pressure Differential: If "B" is back pressure, subtract it from "A." If "B" is vacuum, add it to "A."

Drain Trap Selection

Factors Affecting Pressure Differential

Pressure Differential in Detail

- Inlet pressure can be:
- 1. Air main pressure.
- 2. Reduced pressure controlled by a pressure reducing valve station.

Discharge can be:

- 1. Atmospheric.
- Below atmospheric—under vacuum. Add vacuum to inlet pressure to get pressure differential.
 2" Hg vacuum = approximately 1 psi of pressure below atmospheric.
- 3. Above atmospheric due to: a. Pipe friction
 - b. Elevating liquid

Every 2' lift reduces pressure differential by approximately 1 psi, when the discharge is only liquid.

Special Considerations

Drain traps are available for services other than those found on standard compressed air systems.

High Pressure

Spring-loaded mechanisms allow float type drain traps to operate on pressures above 3,000 psi.

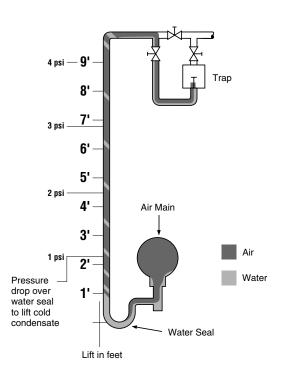
Fluids Other Than Water

Different fluids, such as oils and liquid, can be compensated for with specially weighted floats or lower operating pressure ratings. Fluids with specific gravities down to 0.4 will work with float type drain traps.

Materials of Construction

Service requirements for stainless steel or other corrosionresistant materials can be met by float and inverted bucket type drain traps.

NACE Sour Gas Service


Special materials and construction are required for hydrogen sulfide service.

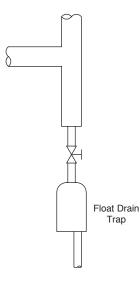
High Capacity for Large Flow Rates

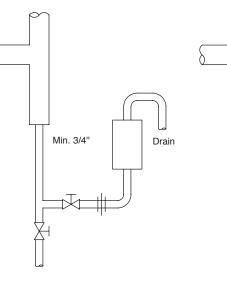
Ultra-capacity type drain traps allow float type drain traps to be used on service requiring capacities up to 700,000 lbs/hr.

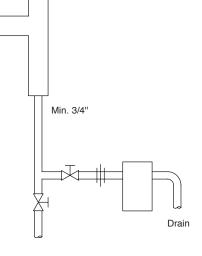
Dual Gravity

Float type drain traps can be modified to drain a heavier fluid from a lighter fluid.

Figure LD-13. Liquid from gravity drain point is lifted to trap by a syphon. Every 2' of lift reduces pressure differential by approximately 1 psi. Note seal at low point and the trap's internal check valve to prevent back flow.


Armstrong[®] How to Drain Air Distribution Systems


Air distribution systems make up the vital link between compressors and the vast amount of air-utilizing equipment. They represent the method by which air is actually transported to all parts of the plant to perform specific functions.


The three primary components of air distribution systems are air mains, air branch lines, and air distribution manifolds. They each fill certain requirements of the system, and together with separators and traps, contribute to efficient air utilization. Common to all air distribution systems is the need for drip legs at various intervals. These drip legs are provided to:

- 1. Let liquid escape by gravity from the fast-moving air.
- 2. Store the liquid until the pressure differential can discharge it through the drain trap.
- 3. Serve as dirt pockets for the inevitable dirt and grit that will accumulate in the distribution system.

Air mains are one of the most common applications for drain traps. These lines need to be kept free of liquid to keep the supplied equipment operating properly. Inadequately trapped air mains often result in water hammer and slugs of liquid, which can damage control valves and other equipment. There is also a freeze potential wherever water is allowed to accumulate. In areas where air is moving slowly, the accumulation of water can effectively reduce the pipe size, thereby increasing the pressure drop and wasting energy.

Figure LD-14.

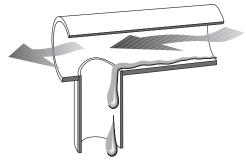

Drain trap installed straight under a low point.

Figure LD-15.

Series 200 or 300 inverted bucket drain traps installed on compressed air line contaminated by oil.

Figure LD-16. Series 800 or 900 i

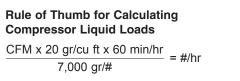
Series 800 or 900 inverted bucket drain traps installed on compressed air line contaminated by oil.

Figure LD-17. Drip leg length should be at least 1-1/2 times the diameter of the main and never less than 10". Drip leg diameter should be the same size as the main, up to 4" pipe size and at least 1/2 of the diameter of the main above that,

Chart LD-3. Recommen (See chart on page LD-6 for		vs.)
Equipment Being Drained	1st Choice and Feature Code	Alternate Choice and Feature Code
Air Mains	FF B, C, D, J, M	FP*

*IB is a good alternative where heavy oil carryover is likely.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.


but never less than 4".

Selection of Drain Traps and Safety Factor for Air Mains

Traps should be selected to discharge a volume of liquid normally produced when the system is up and running. Liquid loads can be estimated if actual CFM or air volume flow is not known. If cold temperatures are possible, the dew point at supply pressure must be known. Once this maximum is determined, the safety factor used to size the trap will be only 10% of the total potential liquid load. Ten percent of the total is used because most of the liquid has been removed in the aftercooler and receiver. The drain trap must handle only the small remaining amount of 10% of the total possible load.

If actual airflow rate is not known, it can be estimated using Chart LD-4, titled "Pressure Drop in Compressed Air Pipe." Using an assumed pressure drop of 1/4 (.25) psi per 100 ft, and 100 psi gauge pressure of air through a 4" line, it can be seen that approximately 1,000 cu ft of free air per minute are flowing through the line. Taking this figure to the chart titled "Water Condensed From Compressed Air," Chart LD-6 on page LD-20, it can be seen that if 80°F, 90% RH air is delivered at 100 psi, then 1.2 lbs of water will be condensed per minute at 1,000 CFM. This number will be multiplied by 60 to convert from minutes to hours, which equals 72 lbs/hr. For this air main then, take 10% of this figure, or 7.2 lbs/hr, to be the flow rate to the drainer.

- Assuming worst condition: 100°F @ 100% RH For other conditions, see page LD-7
- 2. Using air main safety factor of: Load x 10%

Installation of Drain Traps on Air Mains

Drip Legs. All air mains should utilize drip legs and traps at all low spots or natural drainage points, such as ahead of risers, end of mains, ahead of expansion joints or bends, and ahead of valves and regulators (see installation Fig. LD-17).

Where there are no natural drainage points, drip legs and drain traps should still be provided. These should normally be installed at intervals of about 500 ft.

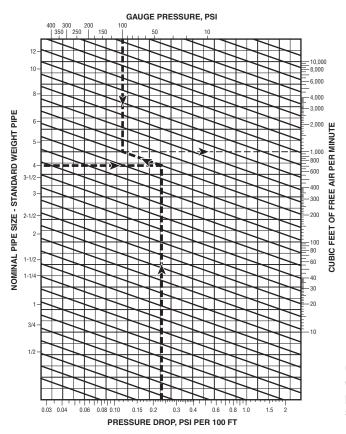


Chart LD-4. Pressure Drop in Compressed Air Pipe

Chart gives pressure drop in compressed air piping in pounds per square inch per 100 ft of pipe. Initial pressure, flow and size of pipe must be known or assumed.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Armstrong[®] How to Drain Air Distribution Systems

Branch Lines

Branch lines are takeoffs of the air main supplying specific areas of air-utilizing equipment. Branch lines must always be taken from the top of the air main. The entire system must be designed and hooked up to prevent accumulation of liquid at any point. If a specific process area requires it, an air dryer will be installed on the branch line.

Trap Selection and Safety Factor for Branches

The formula for computing liquid load in branch lines is the same as that used for air mains. Branch lines also have a recommended safety factor of 10% of total air load. Drip legs must be installed ahead of risers and at the end of branch lines, especially when branch line runouts exceed 50 ft. There are usually several branches off the air main, and in many cases they experience a high liquid load when they run against cold outside walls. This cooling causes more moisture to condense in the branch line than would be seen in the air main.

Distribution Manifolds

A distribution manifold is a terminal for a branch line from which several air users are taken off. They are particularly common in manufacturing facilities for pneumatic tool hookups or takeoffs to cylinder actuators. Like branch lines, it is common for distribution manifolds to be installed against cool walls where low temperatures cause condensation and the accumulation of liquid.

Distribution manifolds are often equipped with filters and regulators. Regulators may also be found at the termination before the air-using device.

Since the air distribution manifold is usually one pipe size larger than the branch line, it is common for air velocity to drop when coming from the branch line. With this decrease in velocity, often combined with lower ambient temperatures, it is common for a liquid to accumulate in the distribution manifold. For this reason, the use of filter-drainer combinations or separate drain traps is recommended. Trapping the liquid in the distribution manifold is important to protect the regulators on air-using equipment and orifices in air-using instruments.

This is a location where manual valves are commonly misused due to their accessibility. To drain the liquid and keep it from fouling an instrument or pneumatic tool, manual valves will often be cracked to atmosphere. When they are left this way, the result is a large air loss due to the unrestricted free blow of air to atmosphere.

Trap Selection and Safety Factor for Distribution Manifolds

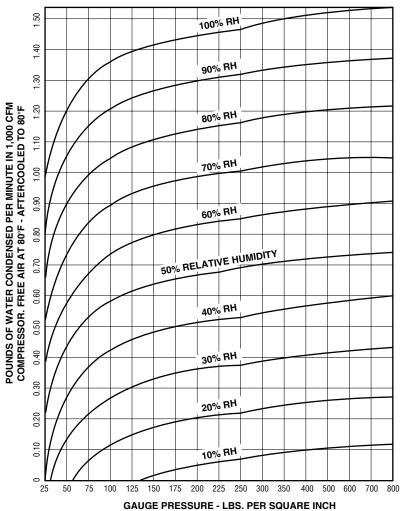
Normally the smallest drain trap is practical for distribution manifolds up to manifold diameters of 2". Above 2", the distribution manifold should be considered a branch, and then the sizing procedure from the Air Main section would apply.

Chart LD-5. Recomme (See chart on page LD-6 f		es.)
Equipment Being Drained	1st Choice and Feature Code	Alternate Choice
Branch Lines	FF B, C, D, J, M	FP*
Distribution Manifolds	FF B, C, D, I, M	FP

*IB is a good alternative where heavy oil carryover is likely.

How to Drain Air Distribution Systems

Installation


The ABCs of trap installation must be followed: "A" for accessible, "B" for below the point being drained, and "C" for close to the point being drained. If the discharge point for this drain trap is some distance away from the drain point, the discharge line from the trap should be run out—not the inlet to the trap.

When installing traps on the drain connection of filters, particular care should be taken to the connection size. Normally outlet connections on filters are 1/4" in size or less. This connection size is normally not large enough to allow anything but slugs of liquid to flow into the trap housing. If a float trap is utilized, it should be either back vented or the connection size must be increased to 3/4" minimum. For additional installation recommendations, see pages LD-51 and LD-52.

Table LD-3. Correction Factors							
	For lbs water condensed at temperatures other than 80°F, find wt condensed at 80°F and multiply by factors shown.						
°F	Factor	°F	Factor	°F	Factor	°F	Factor
10	.070	50	.373	100	1.81	140	5.15
20	.112	60	.525	110	2.39	150	6.52
30	.176	70	.729	120	3.12	160	8.19
40	.259	90	1.35	130	4.02	170	10.2

Chart LD-6. Water Condensed From Compressed Air

WATER CONDENSED FROM COMPRESSED AIR

NOTE: Amount of water condensed is in direct ratio to compressor rating. For example, for 500 CFM compressor, multiply determined amount of condensate by 0.50; for 200 CFM compressor, multiply amount of condensate by 0.20.

Aftercooler

An aftercooler serves as the primary means of moisture removal on industrial air systems. It increases the efficiency of air distribution by reducing pressure drop created when air flows through the system. It does this by using cooling water to reduce the specific volume of the air which, in turn, allows the air to flow through the system with less pressure drop. Aftercoolers are found on most industrial compressors over 10 hp in size. In addition to removing the heat of compression, aftercoolers also remove approximately twothirds of the liquid found in the air, and help in the removal and knock-down of oil carryover from the compressor.

Intercooler

Compressor intercoolers are designed to increase the efficiency of compression by reducing the temperature and specific volume of air between stages of compression. This allows the compressor to do more work at a lower temperature than would normally occur. Because some condensing will occur in the intercooler, a drain trap is required to protect compressor parts.

If liquid were to carry over from the intercooler, it could also carry dirt or scale into the compressor and/or also cause corrosion within the compressor, both of which are undesirable for efficient compressor operation. If slugs of liquid were to pass from the intercooler into the compressor, it would make the compressor operation erratic. Efficient trapping is required at this point to deliver dry air to the next stage of the compressor.

An intercooler is typically a shell and tube heat exchanger. Liquid condensate flow out of the heat exchanger is usually irregular, causing slugs to accumulate and pass into the drain trap. Because of this, a drip leg is required on the intercooler, and full size outlet piping from the intercooler must be used into a dirt pocket. The drip leg allows the slug of condensate to be handled by the drain trap and handles some small backup while the drain trap is discharging the liquid.

The intercooler may also experience oil carryover if the compressor is not of the oil-less or sealed type. As air enters the intercooler, it carries a mist or tiny droplets of oil along with it. Because the air is at a relatively high temperature, this oil is fairly thin. Then, as the intercooler cools the air and oil, the oil may thicken. The drain trap must be able to discharge this oil before it thickens and negatively affects the drain trap and intercooler operation. Trap selection is very important in this type of application where a water and oil mix must be handled by the trap and the oil must be discharge first.

Since the aftercooler removes approximately two-thirds of the total moisture load, traps here will normally be much larger than those found on the rest of the system.

Trap Selection and Safety Factor Intercooler

Select the proper trap for:

- 1. Entering water temperature into the intercooler.
- 2. Airflow rate through the intercooler.
- 3. Intermediate pressure at which the intercooler is operated.

Use Chart LD-6 on page LD-20, "Water Condensed From Compressed Air," to determine the pounds of water condensed per minute in 1,000 CFM. Then multiply by 60 to convert minutes to hours and use a safety factor of 2:1.

	Dommendation Cha LD-6 for "Feature Co		s.)	
Fauinment	Air		Gas	
Equipment Being Drained	1st Choice and Feature Code	Alternate Choice	1st Choice and Feature Code	Alternate Choice
Aftercooler	IB F	FF	*FF	FP
Intercooler	, G, J, K, M	ГГ	B, E, J	ГГ

*Since IBs vent gas to operate, an FF is suggested because gas venting may not be desirable.

How to Drain Intercoolers, Aftercoolers, and Aftercooler Separator Combinations

When selecting the type of trap, consider the failure mode and the ability of the trap to respond to slugs of liquid. In most cases, an "open" failure mode will be desirable as it is vital to protect the compressor from slugs of liquid. A quick response to slugs is important so there is no delay between the time the liquid accumulates and the trap discharges the liquid.

Aftercooler

When the aftercooler condensing rate is not known, there are two typical methods for calculating condensate load. The first method is to calculate total airflow through the system. Then using Chart LD-6 on page LD-20, titled "Water Condensed From Compressed Air," determine pounds of water condensed per minute in 1,000 CFM. Multiply this by 60 to convert minutes to hours for required trap capacity in pounds per hour (the entering maximum incoming summertime temperature and relative humidity must be known to use this chart). This load is then multiplied by 2 to determine required trap capacity.

The second method of calculating trap capacity is to look at maximum allowable flow rate through the aftercooler. Use the "Water Condensed From Compressed Air" chart on page LD-20 in the same manner as described in Method 1. Although this method will normally yield a larger trap size, it allows for the addition of another compressor or the interconnection of several compressors to the system in the event of unplanned by-passes. In the second method, it's important to estimate the average water temperature within the aftercooler as closely as possible. Not all air actually comes in contact with the water tubes; therefore, the air is not uniformly cooled to the water temperature. If actual leaving air temperature is known, this is by far the most accurate figure to use. A properly sized aftercooler will normally cool compressed air down to within 15°F of entering air temperature.

Installation

When installing drain traps on aftercoolers or aftercooler separator combinations, the "ABCs" of trap installation should be followed:

Accessible for maintenance and repair.

Below the point being drained.

Close to the drip point as possible.

Be sure to follow manufacturer's instructions on trap installation. Most aftercoolers are equipped with a separate separator. However, if a separator is not furnished, the aftercooler must be trapped individually. In the case of the aftercooler/separator combination, only the separator normally requires a trap. See Fig. LD-18 or LD-19. But again, it is important to follow manufacturer's instructions. For additional installation recommendations, see pages LD-51 and LD-52.

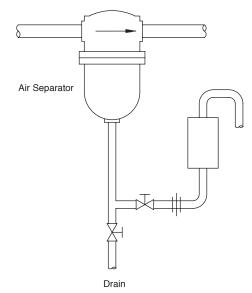


Figure LD-18. Installation of a 200 Series inverted bucket drain trap on compressed air contaminated by oil.

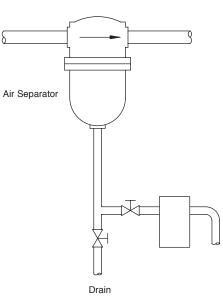


Figure LD-19. 800 Series inverted bucket drain trap installed on compressed air contaminated by oil.

Armstrong[®] How to Drain Separators, Separator Filter Combinations

Separators serve an important function within the compressed air system. Separators may also be known as knockout pots, knockout drums or demisters. Their function is to remove liquid that may be moving at a high speed from the flowing air, and they normally perform this function in a twostep process.

- Separators increase the flow area and volume of the gas, thereby reducing its velocity. Air within the system may flow at velocities exceeding 100 mph. At this velocity any liquid will be entrained as droplets and will not be flowing along the bottom of the pipe. To remove these liquid droplets, it is necessary to reduce the velocity of the gas; otherwise, the droplets accumulate and again become entrained with the flowing gas.
- 2. The second step is to change direction and impinge the liquid. As the velocity of the gas is reduced, the velocity of the fast-moving droplets can be reduced even further by causing the air to take either 90-degree turns or to centrifugally flow within a chamber. Both of these methods serve to "sling" the droplets up against baffles, plates or the wall of the separator.

Because the droplets have a relatively high mass and are incompressible, their velocity will drop dramatically. At this point, gravity will take over, causing the drops to accumulate and flow into the bottom of the separator. Liquid will often fall in sheets down the wall of the separator and collect at the outlet piping in slugs. The immediate drainage of the slugs is important since the separator is normally a final opportunity to protect an air-using device downstream. If liquid is allowed to accumulate for any amount of time, it may undermine the entire purpose and function of the separator. Therefore, if the separator does not do its job efficiently, it can actually become a reservoir that accumulates condensate and forms slugs to be transmitted down the air line and into the device being protected. In this case, the use of a separator may be worse than no protection at all.

Locations

Separators are normally located on the leaving side of aftercoolers and before the compressed air receiver. They are often integral with filters located before sensitive airusing equipment or as part of the filter on a distribution manifold. In this case there may be a combination filter, oiler, regulator and separator drainage point for liquids to accumulate.

Trap Selection and Safety Factor

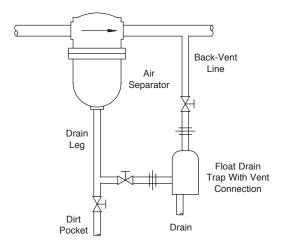
If the separator is part of an aftercooler combination installed between the compressor and the receiver, you should refer to the section on Aftercoolers and Aftercooler Separators for trap selection.

Trap selection is fairly critical, especially on equipment with **larger than** 1" air lines feeding it, since slug formation can wash scale into the air-using equipment and become a serious dirt problem. Therefore, on larger than 1" separators, the flow should be **calculated** by totaling the air consumption of the devices downstream and using Chart LD-6, "Water Condensed From Compressed Air," on page LD-20. Use the full water load expected and the safety factor of 3:1 to figure trap capacity.

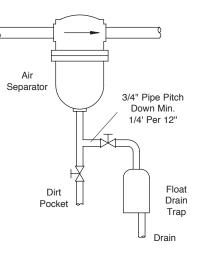
Chart LD-8. Recommendation (See chart on page LD-6 for "Featur		
Equipment Being Drained	1st Choice and Feature Code	Alternate Choice
Separator Line Size > 1"	FF*	IB
Separator Inlet Pipe < 1"	J, B, C, E	FP*

*IB is a good alternative when heavy oil carryover is likely.

To determine proper trap capacity for separators with a pipe size of **less than** 1", the flow can be estimated by using Chart LD-6, "Water Condensed From Compressed Air," on page LD-20, and then calculating 20% of full load.


The safety factor for both selection procedures is 3:1 since separators must respond to surges of liquid from the inlet. In this case, the trap must handle far more liquid than would be experienced under normal operation.

Installation


When installing ball float type traps on separators 1" and above, it's important to back vent the trap (refer to the section on how to hook up ball floats for the purpose and function of back vent lines, page LD-51). All other types of drainers should be coupled as closely as possible to the drain leg. The drain leg should be the same size as the drain connection on the separator and extend 6" below the separator with another 6" allowed for a dirt pocket. The trap is then tee'd off this line (see Figs. LD-20 and LD-21). This piping is crucial because, as noted above, if the separator does not receive full drainage, it can be worse than no separator at all. For this reason, the "ABCs" are critical:

Accessible for inspection and maintenance. Below the equipment being drained. Close to the drain point.

The line size leading from the drip leg to the inlet of the unit should be kept the same size as the trap inlet for good drainage into the trap. Again, when slugs are being handled it's important that the trap begin draining immediately. Back vents on float type traps should be a minimum of 1/2" in pipe size with 3/4" preferred. Any valves used in this back-vent piping should be full ported to allow free gas flow out of and liquid flow into the drain trap. For additional installation recommendations, see pages LD-50 to LD-52.

Figure LD-20. Installation of a drain trap with equalizing line downstream of the separator in order to assure a quick and regular flow to the drainer. Note side inlet connection from separator.

Figure LD-21. Installation of a drain trap on side of separator.

Armstrong[®] How to Drain Receivers

Receivers perform the vital function of storing air for the system. The receiver dampens pressure fluctuations in the system and provides a very short storage time in the event of compressor failure. It also functions as a liquid knockout drum to prevent entrained liquid (which may carry over) from entering the compressed air dryer or the air mains. The receiver should be sized to provide enough storage time for an orderly shutdown, particularly in the case of instrumentation air systems. Receiver volume is what provides the amount of air required for storage periods.

The receiver should be located close to the compressor. Fallout of liquid is normal due to low velocity within the receiver. Velocity is at the lowest point it will reach in any other part of the operating system. The air has a high dwell time within the receiver and is more likely to cool to ambient. This cooling of the air is what causes moisture to condense.

The receiver is equipped with a drain port at the bottom to allow liquids to flow to drain traps. In many cases, because receivers are so large and located adjacent to the compressor, they are installed close to the floor. When this happens, the drain point is relatively inaccessible, making trap piping difficult and gravity flow into the trap often impossible. To avoid this, the receiver should be located on a small concrete pad, which will facilitate efficient drain trap installation and operation.

For several reasons, it's good to keep the receiver drained. When receiver volume is lost, the dampening of the compressed air pressure is reduced and the storage time between compressor failure and system shutdown is greatly reduced. Corrosion within the receiver can also take place when liquid is allowed to accumulate. Manual valves are commonly used to drain receivers since they are typically installed close to the floor. The resulting loss of receiver volume is seldom noticed in the day-to-day operation of the system. However, with any manual system, the valve can be forgotten and not opened. Then, when the weather changes from a relatively dry, low moisture load to a warm, high moisture load, the receiver will lose volume and the dampening effect and accumulator effect are decreased. The compressor can short cycle under these conditions, increasing the wear and tear on the compressor. In addition, the only reminder to open the manual valve is when carryover occurs. In this case, an air dryer can be damaged, liquid can be introduced into the air mains and surge through the system, causing scale to be washed into the system, water hammer and/or freeze damage.

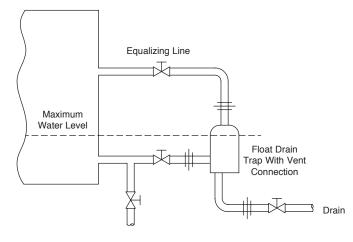
Trap Selection and Safety Factor

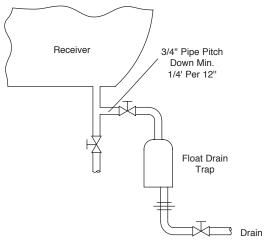
To select the proper trap for the receiver, it is necessary to calculate total system load using Chart LD-6, "Water Condensed From Compressed Air," on page LD-20. Once this total potential load is known, it will be multiplied by the following factors: With an aftercooler, multiply the load by 50%, with an aftercooler separator combination, multiply the total load by 40%, and if no aftercooler is present, multiply the total load by 70%. Once this load is known, a safety factor of 2:1 is applied.

able LD-4. Total System Load Multipliers			
Calculate Total System Load with	Aftercooler	Aftercooler Separator	None
Multiply by	50%	40%	70%

Chart LD-9. Recommendation (See chart on page LD-6 for "Featur		
Equipment Being Drained	1st Choice and Feature Code	Alternate Choice
Receivers	FS* C, E, I, J, K	IB D

*FF for over 120 lbs/hr load.

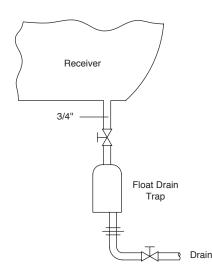

How to Drain Receivers

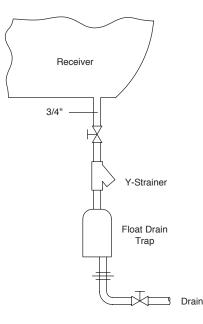


Installation

When a float type drain trap is used with a receiver, the level will run at about the inlet connection on the trap. Therefore, it is important to locate the trap as close to the floor as feasible and with no dips in the piping. See Figs. LD-22 thru LD-25. If there is a piping dip with a float type unit and the vent connection is not back vented, the unit will fail to operate. In the case of a back-vented unit, the dip in the piping will be flooded at all times. An inverted bucket trap can be installed above floor level since it will operate

above the drain point. An internal check valve, tube and coupling should be installed to prevent the liquid seal from flowing backward on system shutdown. A snap action type float unit should be used when any amount of grit is expected in the system. In this case, the spring life can be extended by moving the drain trap slightly upward to allow liquid to accumulate both within the receiver and within the trap body between trap cycles. For additional installation recommendations, see pages LD-50 to LD-52.




Figure LD-22.

Drain trap installed at side of a receiver, close to floor. Water will rise to broken line before drain trap opens.

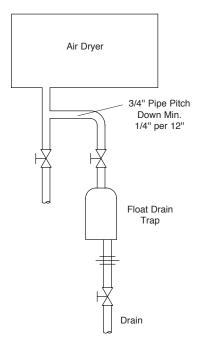
Figure LD-23.

Install the drain trap on side to get better access or compensate for lack of space under the receiver (particularly for drain trap used under compressors).

Figure LD-24.

Installation **not recommended** because of the dirt problem that can occur with a drain trap installed straight under the receiver.

Figure LD-25.


Same installation but with a strainer protecting the drain trap.

The function of dryers is to eliminate liquid in applications where freezing or any moisture accumulation can cause serious problems with the air-consuming equipment. Dryers should always be installed on instrument quality air systems.

Two basic dryer types are dessicant and refrigerated. In the dessicant type, the dessicant chemical absorbs the liquid by chemically bonding with the water molecules. Dessicant dryers can achieve very low dew points and are often installed with a pre-dryer of the refrigerant type. Refrigerant dryers work the same as aftercoolers by circulating cold fluid, causing the moisture to condense. However, their ability to reach low dew points is limited by the temperature at which frost will form on the heat exchanger tubing (greatly reducing heat transfer).

This leads to a discussion of air dew point. Dew point is the temperature at which moisture will condense out from the air due to its relative humidity increasing above 100%; see Chart LD-11. When this happens, the moisture condenses out and can be drained to a drain trap. Dew point is also important when considering air that has left the dryer, because if the air is ever exposed to temperatures below its dew point, moisture will form. Therefore, when applying air dryers, it is important to consider two features of compressed air usage that will impact dryer selection.

- When air is compressed, the dew point is increased. Also, the dew point under pressurized conditions must be known. For example, even though a -40°F dew point is achieved at atmospheric conditions, this becomes a dew point of about 10°F once the air has been compressed to 100 psi. In outdoor systems, when the temperature drops below 10°F, condensing and freezing of that moisture will result.
- 2. When compressed air is expanded through instruments or air tools, its volume increases, pressure decreases and a temperature drop is usually experienced. If the temperature drops below the dew point of the air, undesirable moisture forms in the equipment. The air would never be subjected to that temperature under any conditions other than when expanding.

Drain trap installation with dirt leg for purging the dirt.

Chart LD-10. Recommendatio (See chart on page LD-6 for "Featu		
Equipment Being Drained	1st Choice and Feature Code	Alternate Choice
Dryers	FF B, C, J, N	IB FP

How to Drain Dryers

Drain traps are usually required on refrigerated type dryers only. Here the refrigerant chills air and creates moisture that the drain trap can discharge. In the case of the dessicant type air dryer, the chemical grabs the moisture and bonds chemically with the water molecules, and no liquid accumulates. These bonded water molecules are then usually driven off in a regeneration cycle the dryer must periodically undergo.

Trap Selection and Safety Factor

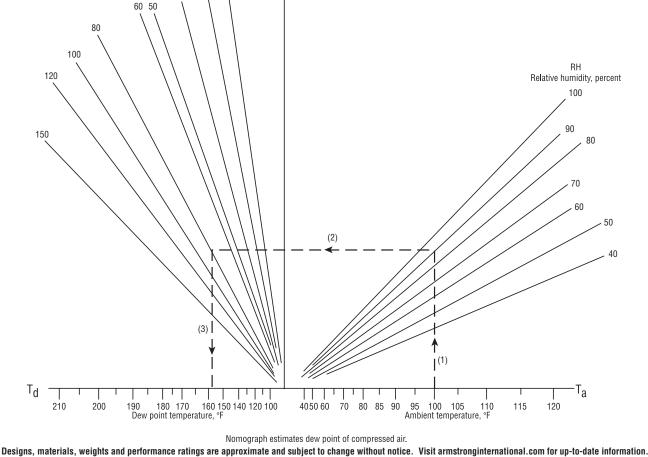
In most cases, the dryer manufacturer will rate the dryer for a given moisture removal rate. The safety factor should still be applied to this load, however. If the manufacturer's ratings are not known, then it's necessary to calculate the moisture content of the air at aftercooler conditions and the moisture content at ambient conditions. Using the lower moisture content between these two, compare that figure to the moisture content at the dew point of the air leaving the drver. The difference in these moisture contents is then multiplied by the airflow through the dryer to determine the moisture load. The safety factor applied to the load is 2:1 since liquid should be drained immediately from the dryer and the liquid tends to flow into the drain trap in slugs.

Chart LD-11. Estimated Dew Point of Compressed Air

P

Compressed air pressure, psia

20 ЗŪ


Installation

The dryer should come with a drain port of a given pipe size sufficient to handle the liquid coming out of the dryer. In this pipe size, a drain leg should be piped up 6" below the dryer with another 6" below that as a dirt pocket. Teeing off this line and into the trap with the same inlet size as the trap will allow for gravity drainage into the trap. Again, the ABCs of trap installation should be followed:

Accessible.

Below the point being drained. Close to the drain leg as possible.

If the trap is too close to the floor to allow the use of a ball float trap, an inverted bucket trap should be considered. For additional installation recommendations, see pages LD-50 to LD-52.

Armstrong[®] How to Select and Size Armstrong Drain Traps

For Draining Liquids From Gases Under Pressure

Armstrong liquid drain traps are offered in a wide variety of sizes and types to meet the most specific requirements. The most widely used models and sizes utilize bodies, caps and some operating parts that are mass produced for Armstrong steam traps. The proven capabilities of these components, along with volume production economies, enable us to offer you exceptionally high quality at attractive prices. You can choose the smallest and least costly model that will meet your requirements with confidence.

Selection Procedure for Draining Liquid From Gas

- Multiply the actual peak liquid load (lbs/hr) by a safety factor of at least 1-1/2 or 2. See paragraph headed "Safety Factors."
- From Orifice Capacity Chart LD-12, find the orifice size that will deliver the required cold water capacity at the maximum operating pressure. If a light liquid is to be drained, convert light liquid capacity in lbs per hour to water capacity using factors in Table LD-5. Then find orifice size from Chart LD-12.
- From the Orifice Size Operating Pressure tables on the product model pages, find the drain trap(s) capable of opening the required orifice size at a specific pressure (and specific gravity if other than cold water–specific gravity 1.0).

NOTE: If specific gravity falls between those shown in the tables, use next lower. Example: If specific gravity is 0.73, use 0.70 gravity data.

Safety Factors

Safety factor is the ratio between actual continuous discharge capacity of the drain trap and the amount of liquid to be discharged during any given period. Chart LD-12 shows the maximum continuous rate of cold water discharge of the drain trap. However, you must provide capacity for peak loads and, possibly, lower-than-normal pressures. A safety factor of 1-1/2 or 2 is generally adequate if applied to the peak load and the minimum pressure at which it occurs. If the load discharge to the trap is sporadic, a higher safety factor may be required. Contact your Armstrong Representative for details.

Selection Examples

EXAMPLE No. 1: Find a drain trap to drain 1,000 lbs of water per hour from air at 500 psi pressure differential.

Multiply 1,000 lbs/hr by 2 (if not already done) to provide a safety factor; thus, a 2,000 lbs/hr continuous discharge capacity is required. In Capacity Chart LD-12, the 2,000 lb capacity line intersects the 500 psi pressure line directly below the No. 38 drill orifice curve. This orifice is available in the No. 1-LD or No. 11-LD drain trap, but for much lower pressures. Moving to the 32-LD, a #38 orifice is good to 489 psi. This is the trap/orifice combination to use. Table LD-14, page LD-37, shows the No. 32-LD drain trap with #38 orifice will operate at pressures up to 489 psi and, therefore, is suitable for the job. Further checking shows the No. 2313 HLS drain trap with a 7/64" orifice could also handle the job, but it is designed particularly for low gravity liquids and is more costly than the No. 32-LD, so the No. 32-LD is a better choice.

EXAMPLE No. 2: Find a drain trap to drain 6,400 lbs/hr (safety factor included) of .80 specific gravity liquid from gas at 400 psi pressure differential.

Since Capacity Chart LD-12 is based on water capacity, the known light liquid capacity requirement must be converted to its equivalent water capacity with the factor given in Table LD-5: $6,400 \times 1.12 = 7,168 =$ water capacity required for using Chart LD-12.

Chart LD-12 shows that 7,168 lbs/hr and 400 psig calls for a 7/32" orifice. Entering the .80 specific gravity column of Table LD-14, page LD-37, shows that a No. 36-LD forged steel drain trap will open a 7/32" orifice at pressures up to 707 psi. As a matter of fact, this drain trap will open a 1/4" orifice at 501 psi and would be the one to use.

NOTE: While drain traps are sized on the basis of pressure differential, steel must be used whenever gauge pressure in the drain trap exceeds 250 psig.

Where Not to Use

Float type drain traps are *not* recommended where heavy oil, sludge or considerable dirt are encountered in lines. Dirt can prevent the valve from seating tightly, and cold oil can prevent float traps from opening. Where these conditions exist, Armstrong inverted bucket BVSW traps should be used.

How to Order Drain Traps

Specify:

- Drain trap size by number
- Orifice size
- Pipe connections—size and type
- Maximum operating pressure

If the correct drain trap cannot be determined, tell us capacity required, maximum pressure, and SPECIFIC GRAVITY of liquid.

Specific Gravity	Multiply Light Liquid Capacity in Pounds Per Hour by:
.95	1.03
.90	1.06
.85	1.09
.80	1.12
.75	1.16
.70	1.20
.65	1.24
.60	1.29
.55	1.35
.50	1.42
.45	1.49
.40	1.58

How to Select and Size Armstrong Drain Traps

For Draining Water From a Light Liquid

Armstrong dual gravity drain traps for draining water from a light liquid are described on pages LD-47 and LD-48. All models shown are identical to corresponding models of traps used to drain liquid from a gas except that float weights are modified to make them suitable for draining water from a light liquid.

Dual gravity drain trap* selection requires that you know the peak heavy liquid load, maximum operating pressure, and specific gravity of the light liquid. With this information you can determine the orifice size required from Chart LD-12 and find the specific drain trap that will meet your conditions from the pressure tables on the dual gravity pages.

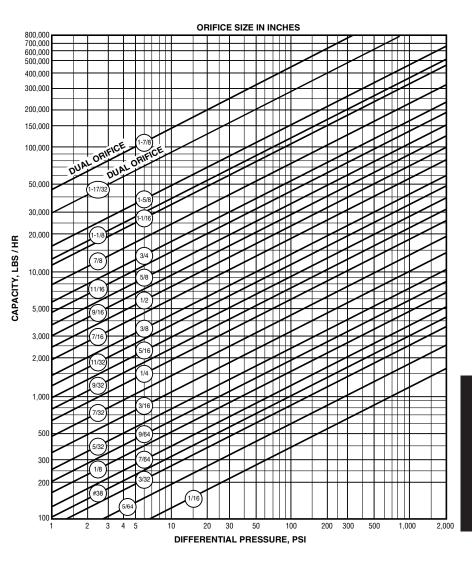
Selection Procedure for Draining Water from a Light Liquid

- Assume a required safety factor of 2:1. Multiply the peak load in pounds per hour by 2. (See paragraph on "Safety Factors.")
- 2. From Capacity Chart LD-12, find the intersection of actual load times safety factor and the minimum operating pressure differential. Follow the pressure line immediately above this point to intersect the next higher orifice capacity curve. Then follow this curve downward and to the left to get the orifice size.
- Inspect the tables on pages LD-47 and LD-48 to find the smallest trap that can open the predetermined orifice size at the maximum operating pressure differential. Do not oversize dual gravity drain traps. Oversizing will cause excessive fluctuation of the interface between the two liquids.

NOTE: While drain traps are sized on the basis of operating pressure differential, forged steel must be used when total pressure in the drain trap exceeds 250 psig.

* Floats for dual gravity drain traps are weighted with quenching oil which, in the unlikely possibility of float failure, may be dispersed through the system. If this is a hazard, consult the Armstrong Application Engineering Department.

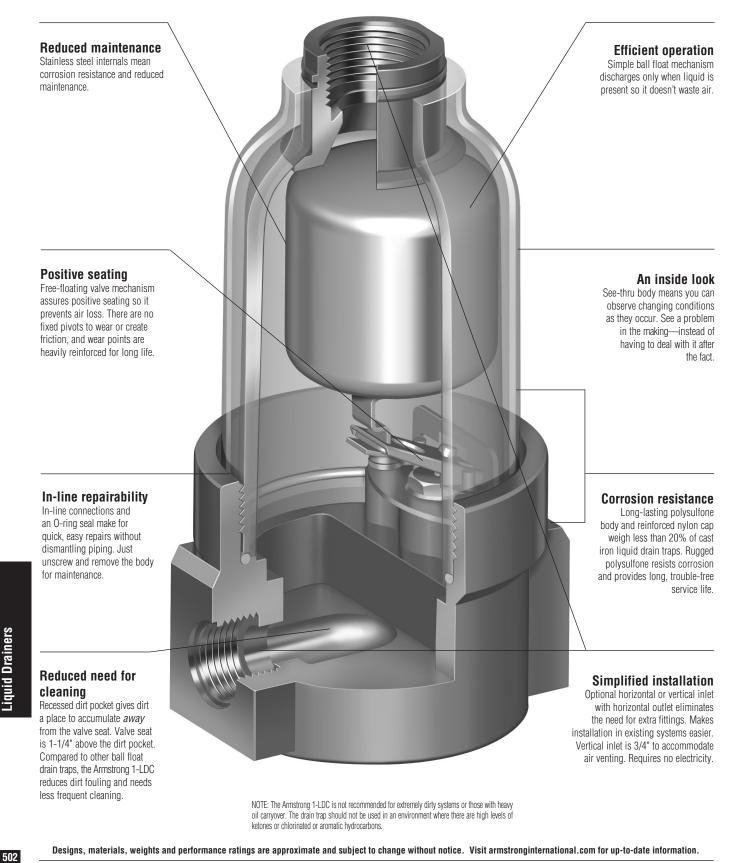
How to Order Dual Gravity Drain Traps


Specify:

- Drain trap size by number
- Orifice size
- Pipe connections—size and type
- · Specific gravity of light liquid
- Weight of water discharge per hour
- Maximum operating pressure

If you are not sure of the drain trap size to use, then specify:

- · Specific gravity of light liquid
- Capacity in pounds of water per hour with safety factor included
- Working pressure—maximum and minimum


Chart LD-12. Calculated Cold Water Capacity of Armstrong Drain Trap Orifices at Various Pressures Actual capacity also depends on trap configuration, piping and flow to trap. It is important to allow for safety factors and fluid density variations due to temperature.

1-LDC—A See-Thru Body So You'll Know When It's Working

Benefits You Can See

1-LDC—A See-Thru Body So You'll Know When It's Working

Now, you can literally see what you've been missing—the early warning signs of a drain trap or system problem. Since you'll *know* the operating condition of a drain trap, you won't waste time and money scheduling maintenance that isn't needed. In other words, you will be able to react to a condition before it becomes a problem.

A simple ball float mechanism requiring no electricity to operate, the new Armstrong 1-LDC discharges automatically *only* when liquid is present. That means no air loss as with timed devices, which open even when liquid is not present.

Moisture in a compressed air system causes a variety of problems everything from dirt fouling and potential corrosion to water hammer. Getting the water out—automatically, reliably—builds greater efficiency into your system. In short, pay attention to your compressed air system, and you'll probably pay less to compress air.

Compare...and Save the Difference

Seeing really is believing—especially when you compare the Armstrong see-thru drain trap with cast iron units. Measure the differences in the time and money you can save with a more efficient, easier-to-maintain compressed air system. For more information or technical assistance, contact your local Armstrong Representative.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

LD-32

Now, you can literally see what you've been missing—the early warning signs of a drain trap or system problem. Since you'll know the operating condition of a drain trap, you won't waste time and money scheduling maintenance that isn't needed. In other words, you'll be able to react to a condition before it becomes a problem.

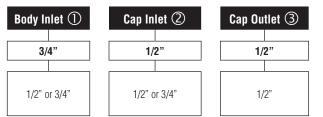
List of Materials

Table LD-6.	
Name of Part	Material
Cap and Fitting	Reinforced Nylon*
Body	Polysulfone
O-Rings (Cap, Body and Fitting)	Nitrile Elastomer Compound
Float, Lever and Screws	Stainless Steel
Valve & Seat	SIGILITESS SIGEL
Retainer Ring	Zinc-Plated Steel

*UV sensitive

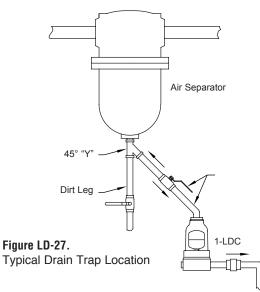
Maximum Operation Pressures and Capacities

Table LD-7.									
Specific Gravity		1.0 0.95							
Orifice Size	Oper	mum ating sure	Capa	acity	Oper	mum ating sure	Capacity		
	psi	psi bar Ib/hr kg/hr				bar	lb/hr	kg/hr	
1/8	121	8.3	1,500	690	109	7.6	1,400	640	
#38	150	10.0	1,100	510	150	10.0	1,100	490	

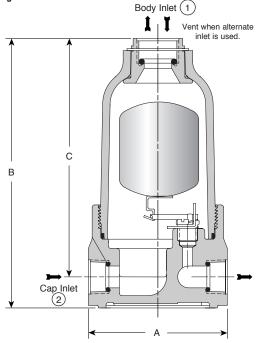

Capacities given are continuous discharge capacities in lb/hr or kg/hr of liquid at pressure differential indicated.

Physical Data

Table LD-8.


Inlet Connections	in	mm
	1/2, 3/4	15, 20
Outlet Connection	1/2	15
Alternate Inlet or Vent Connection	1/2, 3/4	15, 20
"A"	3-1/2	89
"В"	6-7/8	175
"C"	6-3/32	155
Weight Ibs (kg)	1	(0.45)
Maximum Allowable Pressure (Vessel Design)	150 psig @ 150	°F (10 bar @ 65°C)
Maximum Operating Pressure psig (bar)	15	0 (10)

How to Order


A free floating mechanism needs no electricity to operate, the 1-LDC discharges automatically only when liquid is present. That means no air loss as with timed devices that open even when liquid is not present. Moisture in a compressed air system causes problems. Getting the water out—automatically, reliably—builds greater efficiency into your system.

For a fully detailed certified drawing, refer to CD #1031.

Drain traps dispose of water that collects in many places in a compressed air system. Each drain trap arrangement must be considered individually.

Figure LD-28.

1-LDCW See-Thru Air Liquid Drainer for Ozone Applications

For Pressures to 150 psig (10 bar) or Specific Gravity 1.0

What Is Ozone?

Ozone is a gas that forms naturally during thunderstorms when lightning converts normal oxygen molecules (O^2) into ozone (O^3) . The fresh, sweet smell in the air after a storm is the smell of ozone. The unstable ozone molecule reacts rapidly with most substances and is an extremely strong natural oxidant.

How Is Commercial Ozone Produced?

Ozone can be formed by exposing air to ultraviolet light; however, the most common method of generating ozone is by passing air through an electrical discharge. Because ozone has strong oxidizing properties, its production requires corrosion-resistant equipment.

How Is Ozone Used in Water Filtration and Purification?

Because ozone is such an effective oxidant, it kills viruses, bacteria, mold, mildew, fungus and germs. Passing ozone through water achieves high purification rates without any chemical residue. Oxygen is the only by-product.

Typical Customer Applications:

- Purifying standing ground water in Third World countries.
- Conditioning water for poultry and livestock.
- Purifying water in the bottled water industry.
- Filtering and purifying water for process applications.

A See-Thru Body Shows You It's Working

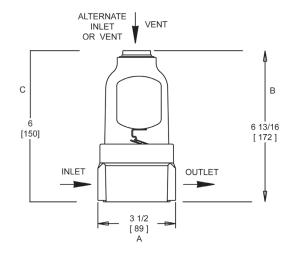
Now, you can literally see what you've been missing. The Armstrong 1-LDCW See-Thru Liquid Drainer lets you easily check its operating condition. You won't have to waste time and money scheduling maintenance that isn't needed, and you can quickly react to a condition before it becomes a problem.

Efficient Operation

Simple ball-float mechanism doesn't need electricity to operate. The liquid drainer automatically discharges liquid when it is present. No air or gas is lost, as with manual draining.

Positive Seating

Free-floating valve mechanism ensures positive seating and prevents liquid loss. There are no fixed pivots to wear or create friction. Wear points are heavily reinforced for long life.


Corrosion Resistance

Long-lasting PBT (polybutylene terephthalate) cap provides trouble-free operation. Stainless steel internal parts resist corrosion and reduce maintenance.

Compare-and Save the Difference

Seeing really is believing–especially when you compare the Armstrong 1-LDCW See-Thru Air Liquid Drainer with manual drainage. Measure the time and money you can save with a more efficient, easier-to-maintain system. For more information or technical assistance, contact your local Armstrong Representative.

NOTE: The Armstrong 1-LDCW should not be used in an environment where there are high levels of ketones or chlorinated or aromatic hydrocarbons.

1-LDCW

List of Materials	
Name of Part	Material
Сар	PBT (Polybutylene Terephthalate)
Body	PS0 Polysulfone*
O-Rings (Body Cap and Fitting)	Viton [®]
Float Lever and Screws	T304 Stainless Steel
Valve & Seat	T316 Stainless Steel
Fitting	PBT (Polybutylene Terephthalate)
Retainer Ring	Zinc Plated Steel

*UV sensitive

Physical Data		
	in	mm
Inlet Connection (In Body)	3/4	20
Inlet Connection (Alternate)	1/2	15
Outlet Connection	1/2	15
"A" Face-to-Face	3-1/2	89
"B" Height	6-13/16	172
"C" Bottom to 🕻	6	152
Maximum Allowable Pressure (Vessel Design)	150 psig (10 bar (@ 150°F @ 66°F)
Maximum Operating Pressure	150 psi	(10 bar)
Specific Gravity Range	1.00 t	o 0.80
Weight, Ib (kg)	1(.5)

Armstrong inverted bucket drain traps are designed for systems where heavy oil and dirt may be encountered. The enlarged bucket vent equipped with a scrub wire (BVSW) keeps the drain trap operating under dirty conditions.

List of Materials

Table LD-9.				
BVSW Model No.	Body & Cap	Valve & Seat	Bucket & Leverage System	Gasket
800, 811, 812, 813, 880, 881, 882, 883, 211, 212, 213	Cast Iron ASTM A48 Class 30			
312, 313	Forged Steel ASTM A105	Stainle	ess Steel	Compressed Asbestos-free
981, 983	Cast Steel ASTM A216 Grade WCB			

Physical Data

Model No. Orifice Size	800 BVSW 880 BVSW		881 BVSW			BVSW BVSW BVSW	312 B	VSW*	813 E 883 E 213 E 313 B 983 B	BVSW BVSW VSW*	981 BVSW	
in	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	ba
1/4		_	_	_	_	_	_	_	125	8.5	_	- 1
7/32	_	_	_	_	_	_	_	_	180	12.5	_	- 1
3/16	_	_	_	_	_	_	_	_	250	17	50	3.
5/32	_	_	_	_	125	8.5	_	_	450	31	85	6
1/8	80	5.5	125	8.5	200	14	_	_	600	41	170	1
7/64	125	8.5	200	14	250	17	600	41		_	250	1
#38	150	10.5	250	17	_	_	_	_		_	330	22

NOTE: Larger capacity models available. Consult your local Armstrong Representative or the Armstrong factory. * Use steel traps for pressures above 250 psi (17 bar).

Model No.	800 E	BVSW	811 8	BVSW	812 B	BVSW	813 BVSW		
Dina Connectiona	in	mm	in	mm	in	mm	in	mm	
Pipe Connections	1/2, 3/4	15, 20	1/2, 3/4, 1	15, 20, 25	1/2, 3/4	15, 20	3/4, 1	20, 25	
Test Plug	1/4	6	1/4	6	1/2	15	3/4	20	
"A"	3-3/4	95	3-3/4	95	5-5/8	143	7	178	
"В"	5-7/16	138	6-7/8	175	9-1/16	230	11-3/4	298	
"C"	5	127	5	127	6-1/2	165	7-3/4	197	
"D"	2-3/4	70	4-1/4	108	5-3/8	137	7-1/32	179	
Number of Bolts	(6		5	6	5		6	
Weight Ibs (kg)	5 (2	2.3)	6 (2	2.7)	15 (27-1/	/2 (13)		
Maximum Allowable Pressure (Vessel Design)			250	psig @ 450°F (17	bar @ 232°C)				
Max. Operating Pressure psi (bar)	150 ((10.5)			250 (17)				

NOTE: Larger capacity models available. Consult your local Armstrong Representative or the Armstrong factory.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

iquid Drainers

Inverted Bucket Drain Traps (BVSW Model)

For Loads to 7,000 lb/hr (3,175 kg/hr)...Pressures to 650 psig (45 bar)

Physical Data

Model No.					Cast Steel							
model No.	880 B	VSW	881 E	BVSW	882 B	VSW	883 B	981 B	VSW	983 BVSW		
Dina Connectiona	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Pipe Connections	1/2, 3/4	15, 20	1/2, 3/4, 1	15, 20, 25	1/2, 3/4	15, 20	3/4, 1, 1-1/4	20, 25, 32	1/2, 3/4	15, 20	3/4, 1	20, 25
Test Plug	1/4	6	1/4	6	1/2	15	3/4	20	1/2	15	3/4	20
"A"	3-3/4	95	3-3/4	95	5-5/8	143	7	7 178		114	7-1/4	184
"В"	6-1/16	154	7-1/16	179	9-3/8	3 244 12-3/8 314		314	8-5/8	219	12-15/32	313
"C"	5	127	5	127	6-1/2	165	7-7/8	200	5-3/8	137	7-3/4	197
"D"	3-7/16	87.3	4-7/16	113	5-3/4	146	7-3/8	187	4-13/16	122	7-9/16	192
Number of Bolts	6		6	5	6		6		6		6	
Weight Ibs (kg)	5-1/2	5-1/2 (2.5) 6 (2.7) 15-1/2 (7) 31 (14)					(4)	11-1/	2 (5)	43 (20)	
Maximum Allowable Pressure (Vessel Design)		250 psig @ 450°F (17 bar @ 232°C)						600 ps	ig @ 650)°F (41 bar @	2343°C)	
Max. Oper. Pressure psi (bar)	150 (10.5) 250 (17)						330 (2	22.5)	600	(41)		

NOTE: Larger capacity models available. Consult your local Armstrong Representative or the Armstrong factory.

Table LD-13. Armstrong 200-3	00 Series Dra	ain Traps (Se	e pages LD-	29 and LD-3	0 for capaci	ty.)							
Model No.			Cast	Iron			Forged Steel						
WOUCI NO.	211 1	BVSW	212 8	BVSW	213	BVSW	312 E	BVSW	313 I	BVSW			
Dina Connections	in	mm	in	mm	in	mm	in	mm	in	mm			
Pipe Connections	1/2	15	1/2, 3/4	15, 20	1/2, 3/4, 1	15, 20, 25	1/2, 3/4, 1	15, 20, 25	1/2, 3/4, 1	15, 20, 25			
Test Plug	1/8	3	3/8	10	1/2	15	_	_	_	_			
"A"	4-1/4	108	5-1/4	133	6-3/8	162	6-3/4	171	8	203			
"В"	6-3/8 162		8-3/4	222	10-3/4	273	10-3/16	259	11-1/2	292			
"G"	_	_				_	4-3/4	121	5-1/8	130			
"K" (© Outlet to © Inlet)	_	_	_	_		_	1-1/4	31.7	1-7/16	36.5			
Number of Bolts		6	1	8		6	(5		8			
Weight Ibs (kg)	6 (1	2.7)	11-1/2	2 (5.2)	20-1/	4 (9.2)	30	(14)	50	(23)			
Maximum Allowable Pressure (Vessel Design)		250 psig @ 450°F (17 bar @ 232°C)						@ 650°F @ 343°C)	1,080 psig @ 650°F (75 bar @ 343°C)				
Max. Oper. Pressure psi (bar)			250	(17)			600	(41)	650	(45)			

NOTE: Larger capacity models available. Consult your local Armstrong Representative or the Armstrong factory.

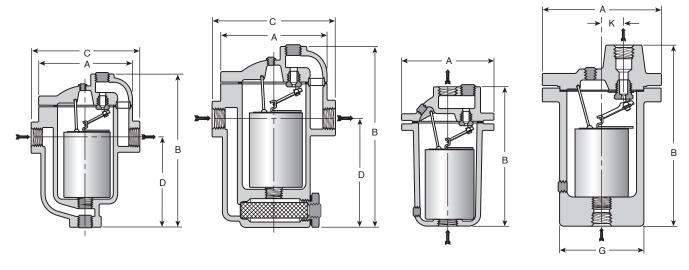


Figure LD-29. Series 800 Figure LD-30. Series 880 & 980 Figure LD-31. Series 200 Figure LD-32. Series 300

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

North America • Latin America • India • Europe / Middle East / Africa • China • Pacific Rim armstronginternational.com

LD-36

Liquid Drainers

Free Floating Lever Drain Traps

9 For Loads to 50,000 lb/hr (22,679 kg/hr)...Pressures to 1,000 psig (69 bar)

ble LD-14. Maxim	<u> </u>																				<i>.</i>		
Model No	Sp. Grav	1.	00	.9	95	.9	0		15		30		75 . Drooou		70 (hor)		i5		50		55		50
Model No.	Orifice in	psig	bar	psig	bar	psig	bar	psig	bar	psiq	bar	psig	bar	re psig psig	(bar) bar	psig	bar	psig	bar	psig	bar	psig	ba
	1/8	121	8.3	109	7.6	98	6.8	87	6.0	75	5.2	64	4.4	52	3.6	41	2.8	29	2.0	18	1.2	6	0.
4.15	7/64	143	9.9	130	9.0	116	8.0	103	7.1	89	6.1	75	5.2	62	4.3	48	3.3	35	2.4	21	1.4	7	0.
1-LD	#38	182	12.5	164	11	147	10.2	130	9.0	113	7.8	95	6.6	78	5.4	61	4.2	44	3.0	26	1.8	9	0.
	5/64	300	20.7	289	19.9	259	17.8	228	15.7	198	13.7	168	11.6	137	9.5	107	7.4	77	5.3	47	3.2	16	1.
	1/8	176	12.1	161	11.1	146	10.1	130	9.0	115	7.9	100	6.9	85	5.8	69	4.8	54	3.7	39	2.7	24	1.
11-LD	7/64	209	14	191	13	173	12	155	10.7	137	9.4	119	8.2	100	6.9	82	5.7	64	4.4	46	3.2	28	1.
	#38	264	18	242	17	219	15	196	14	173	12	150	10.4	127	8.8	104	7.2	81	5.6	59	4.0	36	2.
	5/64 5/16	400 22	28 1.5	400 20	28 1.4	384 18	27 1.3	344 17	24 1.1	304 15	21 1.0	264 13	18 0.9	224	15 0.8	183 10	13 0.7	143 8	9.9 0.5	103 6	7.1 0.4	63 4	4.
	1/4	36	2.5	33	2.3	30	2.1	27	1.9	24	1.7	22	1.5	19	1.3	16	1.1	13	0.9	10	0.4	7	0.
2-LD to 250 psi	3/16	79	5.5	73	5.0	67	4.6	60	4.2	54	3.7	47	3.3	41	2.8	35	2.4	28	2.0	22	1.5	16	1.
(17 bar)	5/32	137	9.4	126	8.7	115	7.9	104	7.2	93	6.4	82	5.6	71	4.9	60	4.1	49	3.4	38	2.6	27	1
22-LD to 533 psi	1/8	234	16.1	215	14.8	196	13.5	178	12.2	159	10.9	140	9.6	121	8.4	102	7.1	83	5.8	65	4.5	46	3.
(37 bar)	7/64	299	20.6	275	19	251	17.3	227	15.7	203	14	179	12	155	10.7	131	9.0	107	7.4	83	5.7	59	4.
(0. 00.)	#38	372	25.7	342	23.6	313	21.6	283	19.5	253	17.4	223	15	193	13	163	11.2	133	9.2	103	7.1	73	5.
	5/64	533	37	475	33	461	32	417	29	372	26	328	23	284	20	240	17	196	14	152	10.5	108	7.
	5/16	29	2.0	26	1.8	23	1.6	21	1.4	18	1.2	15	1.0	12	0.9	10	0.7	7	0.5	4	0.3	2	0.
	1/4	47	3.3	43	3.0	38	2.6	34	2.3	29	2.0	25	1.7	20	1.4	16	1.1	12	0.8	7	0.5	3	0
	3/16 5/32	104	7.2	94 163	6.5	85	5.8	75 129	5.2	65	4.5 7.7	55 95	3.8	45 78	3.1 5.4	35	2.4	25 44	1.8 3.0	16 27	1.1	6 10	0.
32-LD	5/32	180 307	12 21	278	11 19	146 249	10 17	220	8.9 15	112 191	13	95	6.5 11	133	5.4 9	61 104	4.2 7.2	44 75	3.0 5.2	46	1.9 3.2	10	1.
	7/64	393	27	356	25	319	22	282	19	245	17	207	14	170	12	133	9	96	6.6	59	4.1	22	1.
	#38	489	34	443	31	397	27	351	24	304	21	258	18	212	15	166	11	120	8	73	5.1	27	1
	5/64	600	41	600	41	585	40	517	36	449	31	381	26	313	22	244	17	176	12	108	7	40	2.
3-LD to 250 psi	1/2	16	1.1	14	1.0	13	0.9	12	0.8	10	0.7	9	0.6	7	0.5	6	0.4	5	0.3	3	0.2	2	0.
(17 bar)	3/8	33	2.3	31	2.1	28	1.9	25	1.7	22	1.5	19	1.3	16	1.1	13	0.9	10	0.7	7	0.5	4	0.
(Cast Iron)	5/16	54	3.7	49	3.4	44	3.0	39	2.7	35	2.4	30	2.1	25	1.7	20	1.4	16	1.1	11	0.8	6	0.
13-LD to 570 psi	9/32	71	4.9	65	4.5	59	4.0	52	3.6	46	3.2	40	2.7	34	2.3	27	1.9	21	1.4	15	1.0	8	0.
(39 bar)	1/4	107	7.4	97	6.7	88	6.1	79	5.4	69	4.8	60	4.1	50	3.5	41	2.8	32	2.2	22	1.5	13	0.
(Stainless)	7/32	153	10.5	139	9.6	126	8.7	112	7.7	99	6.8	85	5.9	72	5.0	59	4.0	45	3.1	32	2.2	18	1.
33-LD to 900 psi	3/16 5/32	230 359	16 25	209 327	14 23	189 296	13 20	169 264	12 18	149 233	10.3 16	129 201	8.9 14	108 169	7.5 12	88 138	6.1 9.5	68 106	4.7 7.3	48 74	3.3 5.1	27 43	1.
(62 bar)	1/8	726	50	662	46	598	41	534	37	470	32	406	28	342	24	278	9.5 19	214	15	150	10.3	86	5.9
(Steel)	7/64	900	62	847	58	765	53	683	47	601	41	519	36	437	30	356	25	274	19	192	13	110	7.0
	1-1/16	21	1.4	19	1.3	18	1.2	16	1.1	15	1.0	13	0.9	12	0.8	10	0.7	9	0.6	7	0.5	6	0.
	7/8	32	2.2	30	2.1	28	1.9	26	1.8	23	1.6	21	1.4	19	1.3	16	1.1	14	1.0	12	0.8	9	0.
	3/4	47	3.2	44	3.0	40	2.8	37	2.5	34	2.3	30	2.1	27	1.9	24	1.6	20	1.4	17	1.2	14	0.
	5/8	72	4.9	67	4.6	61	4.2	56	3.9	51	3.5	46	3.2	41	2.8	36	2.5	31	2.1	26	1.8	21	1.
	9/16	95	6.5	88	6.1	81	5.6	75	5.2	68	4.7	61	4.2	55	3.8	48	3.3	41	2.8	34	2.4	28	1.
	1/2	138	9.5	128	8.8	118	8.1	108	7.5	99	6.8	89	6.1	79	5.4	69	4.8	59	4.1	50	3.4	40	2.
6-LD Cast Iron	7/16 3/8	196 250	13 17	182 250	13 17	168 250	12 17	154 243	11 17	140	10 15	126 199	8.7 14	112 177	7.7	98 155	6.8 11	85 133	5.8 9.0	71	4.9 7.7	57 90	3.
Gast ITOIT	11/32	250	17	250	17	250	17	243	17	221 250	17	250	14	236	12 16	207	14	178	12	148	10	119	8
	5/16	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	228	16	191	13	153	1
	9/32	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	201	i
	1/4	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	1
	7/32	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	1
	3/16	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	17	250	1
	1-1/16	16	1.1	15	1.01	13	0.91	12	0.81	10	0.71	9	0.6	7	0.5	6	0.4	4	0.3	3	0.2	1	0
	7/8	25	1.7	23	1.6	21	1.4	18	1.3	16	1.1	14	0.95	11	0.79	9	0.63	7	0.47	5	0.31	2	0.
	3/4	36 56	2.5 3.9	33 51	2.3 3.5	30 46	2.1 3.1	27 41	1.8 2.8	23 35	1.6 2.4	20 30	1.4 2.1	17 25	1.1	13 20	0.91	10	0.68	7 10	0.45	3 5	0.
	5/8 9/16	50 74	3.9 5.1	67	3.5 4.6	46 60	3.1 4.2	54	2.8	35	3.2	30 40	2.1	25 34	1.7 2.3	20	1.4 1.8	15 20	1.05 1.4	13	0.69	5	0.
	1/2	107	7.4	97	6.7	88	4.2 6.0	78	5.4	68	4.7	58	4.0	49	3.4	39	2.7	20	2.0	19	1.3	10	0.
36-LD	7/16	152	10.5	138	9.6	125	8.6	111	7.6	97	6.7	83	5.7	69	4.8	55	3.8	41	2.0	27	1.9	14	0.
Forged Steel	3/8	240	17	218	15	197	14	175	12	153	10.5	131	9.0	109	7.5	87	6.0	65	4.5	43	3.0	21	1
	11/32	320	22	291	20	262	18	233	16	203	14	174	12	145	10	116	8.0	87	6.0	58	4.0	29	2
	5/16	411	28	374	26	336	23	299	21	262	18	224	15	187	13	149	10.3	112	7.7	74	5.1	37	2
	9/32	539	37	490	34	441	30	392	27	343	24	293	20	244	17	195	13	146	10.1	97	6.7	48	3
	1/4	788	54	716	49	644	44	573	39	501	35	429	30	357	25	286	20	214	15	142	9.8	70	4
	7/32	1,000	69	1,000	69	910	63	808	56	707	49	606	42	505	35	403	28	302	21	201	14	99	6
0	3/16	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	992	68	826	57	660	46	494	34	328	23	163	11
Specific Gra	avitv	1.0	JU	.9	95	9. 1	0	8. 1	5	3. 1	30	.7	75	1	'0	I F	65	1	50	5	55	1 .5	50

High Temperature Service

Maximum allowable working pressures

of floats decrease at temperatures

above 100°F (37.8°C). Allow for approximately:

- 10% decrease at 200°F (93.3°C)
- 15% decrease at 300°F (148.9°C)
- 20% decrease at 400°F (204.4°C)

The float is not always the limiting factor, however. Consult with Armstrong Application Engineering if you

have a high-temperature application that also requires maximum operating pressures.

Armstrong's cast iron, free floating lever drain traps use the same bodies, caps, lever mechanisms, valves and seats of Armstrong inverted bucket steam traps that have been proven in years of service. Elliptical floats and high leverage make it possible to open large orifices to provide adequate capacity for drain trap size and weight.

List of Materials

Table LD	-15.				
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket
1-LD 2-LD 3-LD 6-LD	Si	tainless Steel		Cast Iron ASTM A48 Class 30	Compressed Asbestos-free

For information on special materials, consult the Armstrong Application Engineering Department.

The hemispherical valve, seat and leverage of the 1-LD,

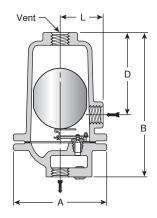


Figure LD-33. No. 2-LD, 3-LD and 6-LD cast iron guided lever drain traps. No. 1-LD has standard top inlet and optional side connection.

Physical Data

Table LD-16. Armstrong Gu	ided Lever Liqu	id Drain Traps												
Model No.	Cast Iron													
MOUEL NO.	1-LD		2-	LD	3-	LD	6-	LD						
Dina Connections	in	mm	in	mm	in	mm	in	mm						
Pipe Connections	1/2*	15*	1/2, 3/4	15, 20	1/2, 3/4, 1	15, 20, 25	1-1/2, 2	40, 50						
"A"	3-3/4	95	5-1/4	133	6-3/8	162	10-3/16	259						
"B"	5-1/2	140	8-3/4	222	11-1/2	292	18	457						
"D"	2-7/8	73	5-1/8	130	7	188	9-3/8	238						
"K" (@ Outlet to @ Inlet)	13/16	21	—	—	_	—	—	—						
"L"	1-7/8	48	2-7/16	62	2-7/8	73	4-5/8	117						
Approx. Wt. Ib (kg)	4 (2)		12 (5.5)	21 (9.5)	78 (35.5)							
Max. Allow. Pressure (Vessel Design)		@ 200°F† @ 93°C)	250 psig @ 450°F (17 bar @ 232°C)											

NOTE: Vessel design pressure may exceed float collapse pressure in some cases.

Pipe size of vent connection is same as that of inlet and outlet connections.

+For pressures not exceeding 250 psig (17 bar), a maximum temperature of 450°F (232°C) is allowed.

*1/4" (6 mm) outlet.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

2-LD, 3-LD and 6-LD cast iron traps are identical in design,

materials and workmanship to those for saturated steam

service up to 300 psig (21 bar) with the exception of the

For a fully detailed certified drawing, refer to:

CD #1070

closing under all conditions.

2-LD, 3-LD, 6-LD CD #1034

1-LD

addition of a guidepost to assure a positive, leaktight valve

Armstrong's stainless steel, free floating lever drain traps use the same bodies, caps, lever mechanisms, valves and seats of Armstrong inverted bucket steam traps that have been proven in years of service. Elliptical floats and high leverage make it possible to open large orifices to provide adequate capacity for drain trap size and weight.

List of Materials

Table LD	Table LD-17.											
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket							
11-LD 22-LD 13-LD	S	tainless Steel		Sealed Stainless Steel, 304L	_							

For information on special materials, consult the Armstrong Application Engineering Department.

The hemispherical valve, seat and leverage of the 11-LD,

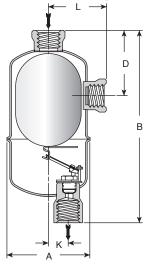


Figure LD-34. No. 22-LD and 13-LD stainless steel guided lever liquid drain trap with sealed, tamperproof construction.

Physical Data

Table LD-18. Armstrong Guided Lever Liquid Drain Traps

Stainless Steel Model No. 11-LD** 22-LD 13-LD Pipe Connections in mm in mm in mm 3/4* 20* 3/4 20 1 25 'Α' 2-3/4 70 3-15/16 100 4-1/2 114 "B" 11-3/8 7-1/4 184 8-13/16 224 289 "D" ____ 3 76 6-1/8 156 "K" 7/8 22 1-3/16 30 9/16 14 "L" 2-5/8 3-9/32 83 67 ____ ____ Approx. Wt. Ibs (kg) 1-3/4 (0.79) 3-1/4 (1.5) 7-1/2 (3.4) 500 psig @ 100°F (35 bar @ 38°C) 600 psig @ 100°F (41 bar @ 38°C) 570 psig @ 100°F (39 bar @ 38°C) Max. Allowable Pressure (Vessel Design) 440 psig @ 500°F (30 bar @ 260°C) 475 psig @ 500°F (33 bar @ 260°C) 490 psig @ 500°F (34 bar @ 260°C)

Note: Vessel design pressure may exceed float collapse pressure in some cases. Pipe size of vent connection is same as that of inlet and outlet connections.

*1/2" (15 mm) outlet. **No side connection.

22-LD and 13-LD stainless steel traps are identical in design, materials and workmanship to those for saturated steam service up to 570 psig (39 bar) with the exception of the addition of a guidepost to assure a positive, leaktight valve closing under all conditions.

For a fully detailed certified drawing, refer to list below: 11-LD CD #1066 13-LD and 22-LD CD #1086

Armstrong's forged steel, free floating lever drain traps use the same bodies, caps, lever mechanisms, valves and seats of Armstrong inverted bucket steam traps that have been proven in years of service. Elliptical floats and high leverage make it possible to open large orifices to provide adequate capacity for drain trap size and weight.

List of Materials

Table LD-21.	

TANIE LL	-21.					
Model No.	Valve & Leverage Seat System		Float	Body & Cap	Gasket	
32-LD 33-LD 36-LD	S	tainless Steel		Forged Steel ASTM A105	Compressed Asbestos-free	

For information on special materials, consult the Armstrong Application Engineering Department.

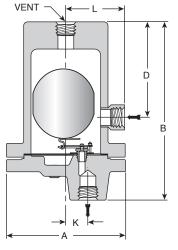


Figure LD-37.

No. 32-LD, 33-LD and 36-LD forged steel guided lever drain trap. Socketweld or flanged connections are also available.

Physical Data

Table LD-22. Armstrong	Table LD-22. Armstrong Guided Lever Liquid Drain Traps												
Model No.	Forged Steel												
MOUEL NO.	32	-LD†	33-	LD†	36-	LD†							
Dina Connectiona	in	mm	in	mm	in	mm							
Pipe Connections	1/2, 3/4, 1	15, 20, 25	1/2, 3/4, 1	15, 20, 25	1-1/2, 2	40, 50							
"A"	6-3/4	171	8	203	11-7/8	302							
"B"	10-3/16	259	11-9/16	294	17-1/8	435							
"D"	5-9/16	141	6-1/16	154	9	229							
"К"	1-1/4	32	1-7/16	37	2-1/8	54							
"L"	3-3/8	86	3-9/16	90	6-1/16	154							
Approx. Wt. Ibs (kg)	31	(14)	49	(22)	163 (74)								
Max. Allowable Pressure (Vessel Design)		°F (41 bar @ 38°C) F (35 bar @ 400°C)	1,000 psig @ 100°F (69 bar @ 38°C) 600 psig @ 750°F (41 bar @ 400°C)										

Note: Vessel design pressure may exceed float collapse pressure in some cases. Pipe size of vent connection is same as that of inlet and outlet connections. †Available in Type 316 stainless steel. Consult factory.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

The hemispherical valve, seat and leverage of the 32-LD, 33-LD and 36-LD forged steel traps are identical in design, materials and workmanship to those for saturated steam service up to 1,000 psig (69 bar) with the exception of the addition of a guidepost to assure a positive, leaktight valve closing under all conditions.

For a fully detailed certified drawing, refer to CD #1035.

North America • Latin America • India • Europe / Middle East / Africa • China • Pacific Rim armstronginternational.com

180 Series Free Floating Lever Drain Traps

All Stainless Steel for Horizontal Installation

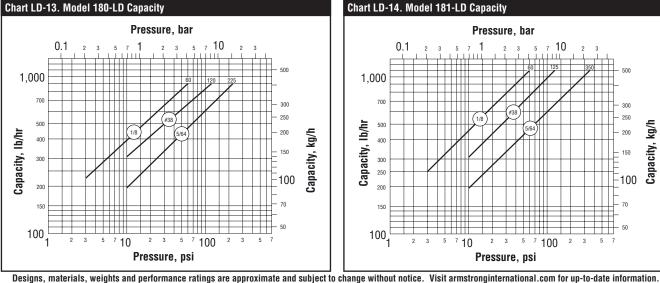
For pressures to 400 psig (28 bar) . . . Capacities to 2,000 lb/hr (907 kg/hr)

Armstrong's stainless steel, free floating lever drain traps use the same bodies, caps, lever mechanisms, valves and seats as Armstrong inverted bucket steam traps that have been proven in years of service. Elliptical floats and high leverage make it possible to open large orifices to provide adequate capacity for drain trap size and weight.

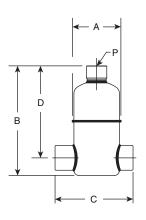
The hemispherical valve, seat and leverage of the 180-LD and 181-LD stainless steel traps are identical in design, materials and workmanship to those for saturated steam service up to 570 psig (39 bar), except that the 180 Series traps have a guidepost to ensure a positive, leak-tight valve closing under all conditions. The 180 Series is designed for situations where mounting a drainer c

For a fully detailed certified drawing, refer to list below: 180-LD CD #1276

List of Materials


Та	ble LD-19.				
	Model No.	Valve & Seat	Leverage System	Float	Body & Cap
	180-LD 181-LD		Stainless Steel		Sealed Stainless Steel 304L

Physical Data


Table LD-20. Armstrong 180 Series Free Floating Lever Drain Traps									
Model No.	180-L	.D	181-LD						
Dina Connections	in	mm	in	mm					
Pipe Connections	1/2	15	3/4	20					
"A" (Diameter)	2-11/16	68	2-11/16	68					
"B" (Height)	6	152	7-1/4	184					
"C" (Face to Face)	4-5/16	110	4-5/16	110					
"D" (Bottom to C Inlet)	5-1/8	130	6-9/32	160					
"P"	1/2	15	3/4	20					
Weight, Ib (kg)	1-3/4 (0).8)	2-3/8 (1.1)						
Max. Allowable Pressure (Vessel Design)	500 psig @ 100°F (35 bar @ 38°C) 440 psig @ 500°F (30 bar @ 260°C)								

Note: Vessel design pressure may exceed float collapse pressure in some cases. Pipe size of vent is same as that of inlet and oulet connections.

Chart LD-13. Model 180-LD Capacity

D В С

Figure LD-35. Model 180-LD

Figure LD-36. Model 181-LD

Capacity, kg/h

North America • Latin America • India • Europe / Middle East / Africa • China • Pacific Rim armstronginternational.com

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Liquid Drainers

Fixed Pivot and Snap Action Drain Traps

9[®] For Loads to 3,900 lb/hr (1,769 kg/hr)...Pressures to 1,000 psig (69 bar)

Continuous Flow or On-Off Float Type Drain Traps

Armstrong's line of fixed lever and snap action drain traps includes two basic models available in cast iron and forged steel. The floats are light enough to handle light liquids.

No. 21—A small, high-quality, economical drain trap for use on drainage jobs where dirt and oil are not encountered. It employs a single lever with a fixed pivot.

No. 21-312—Forged steel version of the No. 21 with larger float and higher leverage.

No. 71-A—Wide open, tight-shut drain trap for use where fine dirt and grit may be present or where liquid load is light. A flat spring in the leverage system holds the valve closed until the trap body is nearly full of water. Then it snaps open, washing dirt through. When the trap body is nearly empty, the spring snaps the valve shut.

No. 71-315—Forged steel version of No. 71-A.

CAUTION: Ball float drain traps are not recommended where heavy oil, sludge or considerable dirt are encountered in lines. Under these circumstances use Armstrong inverted bucket BVSW traps.

Table LD-23. Maximum Operating Pressures for Handling Different Specific Gravity With Orifices Available in Fixed Lever and Snap Action Drain Traps

		Sp. Grav.	1.	00	.9	5	.9	0	.8	15	.8	30	.7	75	.7	'0	.6	i5	.6	60	.5	i5		50
М	odel No.	Orifice size (in)				-				-	num Ope													
		psig	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	ba
		1/4	22	1.5	20	1.4	18	1.3	16	1.1	15	1.0	13	0.9	11	0.8	10	0.7	8	0.5	6	0.4	4	0.3
		7/32	28	1.9	26	1.8	24	1.6	21	1.5	19	1.0	17	1.2	15	1.0	12	0.9	10	0.7	8	0.6	6	0.4
		3/16	38	2.6	35	2.4	32	2.2	29	2.0	26	1.8	23	1.6	20	1.4	17	1.2	14	1.0	11	0.7	8	0.5
		5/32	54	3.8	50	3.5	46	3.2	41	2.9	37	2.6	33	2.3	29	2.0	24	1.7	20	1.4	16	1.1	11	0.8
	21	9/64	67	4.6	62	4.2	56	3.9	51	3.5	46	3.1	40	2.8	35	2.4	30	2.1	24	1.7	19	1.3	14	1.0
		1/8	84	5.8	78	5.4	71	4.9	64	4.4	58	4.0	51	3.5	44	3.0	37	2.6	31	2.1	24	1.7	17	1.2
		3/32	148	10.2	136	9.4	124	8.6	112	7.7	101	6.9	89	6.1	77	5.3	66	4.5	54	3.7	42	2.9	30	2.
		5/64	210	14	193	13	176	12	160	11	143	9.9	126	8.7	110	7.6	93	6.4	77	5.3	60	4.1	43	3.0
		1/16	250	17	250	17	250	17	245	17	220	15	194	13	168	12	143	9.9	117	8.1	92	6.3	66	4.6
		1/4	42	2.9	39	2.7	36	2.5	33	2.3	30	2.1	28	1.9	25	1.7	22	1.5	19	1.3	16	1.1	13	0.
	3-3/8 oz (96	7/32	54	3.8	51	3.5	47	3.2	43	3.0	40	2.7	36	2.5	32	2.2	28	2.0	25	1.7	21	1.5	17	1.2
	g) Float	3/16	74	5.1	69	4.7	64	4.4	59	4.0	54	3.7	49	3.4	44	3.0	39	2.7	34	2.3	28	2.0	23	1.
*		5/32	200	14	197	14	182	13	168	12	153	10.6	139	9.6	125	8.6	110	7.6	96	6.6	82	5.6	67	4.
21-312*	4-1/2 oz	9/64	229	16	211	15	200	14	200	14	189	13	171	12	153	10.6	136	9.4	118	8.1	100	6.9	83	5.
21.	(128 g)	1/8	288	20	266	18	243	17	221	15	200	14	200	14	193	13	171	12	148	10.2	126	8.7	104	7.2
	Float	3/32	500	34	465	32	426	29	387	27	348	24	309	21	270	19	231	16	200	14	200	14	182	13
	6 oz (170 g)	5/64	589	41	533	37	500	34	500	34	495	34	440	30	384	27	329	23	274	19	218	15	200	14
	Float	1/16	600	41	600	41	600	41	600	41	563	39	500	34	500	34	500	34	420	29	335	23	250	17
		1/4	10	0.7	10	0.7	10	0.7	10	0.7	10	0.7	10	0.7	10	0.7	10	0.7	—	—	_	-	-	-
71-	A & 71-315	3/16	20	1.4	20	1.4	20	1.4	20	1.4	20	1.4	20	1.4	20	1.4	20	1.4	_	_	_	_	-	_
	**	1/8	100	6.9	100	6.9	100	6.9	100	6.9	100	6.9	100	6.9	100	6.9	100	6.9	_	_	_	_	_	_
		7/64	200	14	200	14	200	14	200	14	200	14	200	14	200	14	200	14	_	_	_	_	_	_
	71-A	5/64	250	17	250	17	250	17	250	17	-	—	—	—	—	_	_	—	—	—	_	—	-	- 1
	71.015	5/64	500	35	500	35	500	35	500	35	-	—	—	—	—	_	_	—	—	—	_	—	-	-
	71-315	1/16	1,000	69	1,000	69	1,000	69	1,000	69	_	_	_	_		_	_	_	_	_	_	_	_	_

NOTE: If actual specific gravity falls between those shown in above table, use next lower. For example, if actual gravity is 0.73, use 0.70 gravity data.

*5/32" orifice (and smaller) utilizes higher leverage mechanism designated 21-312V.

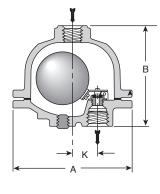
**Use 6 1/4 oz. float for 0.85 - 1.0 S.G. Use 3 3/8 oz. float for 0.65 - 0.80 S.G.

Fixed Pivot and Snap Action Drain Traps

For Loads to 3,900 lb/hr (1,769 kg/hr)...Pressures to 1,000 psig (69 bar)

Physical Data

Table LD-24. Armstr	ong Fixed Lev	er and Snap A	ction Drain Tra	ips					
Model No.		Cast	Iron			Forged	l Steel		
WOUEI NO.	2	1†	71	-A*	21-3	12†	71-31	5*	
Dina Connections	in	mm	in	mm	in	mm	in	mm	
Pipe Connections	1/2, 3/4	15, 20	3/4, 1	20, 25	1/2, 3/4, 1	15, 20, 25	3/4, 1, 1-1/4, 1-1/2	20, 25, 32, 40	
"A"	6-3/16	157	8-1/2	216	6-3/4	171	9-3/4	248	
"В"	5-1/4	133	10-3/4	273	10-3/16	259	15-5/8	397	
"D"	_		4-1/4	108	5-9/16	141	7-13/16	198	
"K"	1-5/16	33	_	_	1-1/4	32	—	—	
"L"	_		3-1/2	89	3-5/16	84	4-5/8	117	
Weight, Ibs (kg)	8 (4)		29 (13)		30 (14)		92 (42)		
Maximum Allowable Pressure (Vessel Design)					600 psig @ 100°F 500 psig @ 750°F		1,000 psig @ 100°F (69 bar @ 38°C) 600 psig @ 750°F (41 bar @ 400°C)		


† Cast 316 stainless steel body and cap with all stainless steel internals available. Aluminum body and cap available for Model 21 only. Consult factory. *Snap action drain traps should not be used where load exceeds 120 lb/hr (54 kg/hr). Use on greater loads shortens spring life.

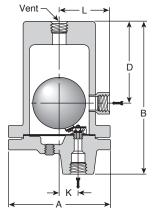
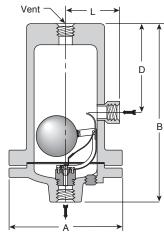

List of Materials

Table LD-25							
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket		
21				Cast Iron ASTM			
71-A	Sta	ainless Steel		A48 Class 30	Compressed		
21-312 71-315				Forged Steel* ASTM A105	Asbestos-free		



*No. 71-315 cap is cast steel.

Vent

Figure LD-41. No. 71-315 forged steel snap action drain trap.

Figure LD-38. No. 21 cast iron fixed lever drain trap.

Figure LD-39. No. 21-312 forged steel fixed lever drain trap.

Figure LD-40. No. 71-A cast iron snap action drain trap.

For a fully detailed certified drawing, refer to list below:No. 21CD #1037No. 71-ACD #1038No. 21-312CD #1106No. 71-315CD #1107

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Liquid Drainers

High Leverage Spring-Loaded Ball Float Type Drain Traps

For Low Flows at Pressures to 3,700 psi (255 bar) and Specific Gravity Down to 0.40

The Armstrong High Leverage Series of liquid drain traps was developed especially for draining low specific gravity fluids from gases at high pressures. They use standard Armstrong forged steel bodies with very high leverage systems and spring assist.

NOTE: Models 2313-HLS, 2316-HLS, 2413-HLS and 2415-HLS are also available with cast T-316 stainless steel body and all-stainless steel internals. Consult factory.

Because of design considerations in this drain trap, it is essential that a safety factor of at least 2 be applied to the peak liquid load for sizing purposes.

Do not use HLS drain traps on steam service.

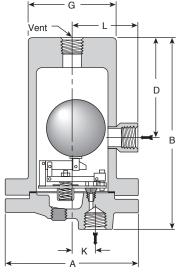
Sour Gas Service

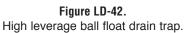
Forged steel and stainless steel traps can be modified to resist hydrogen sulfide stress corrosion. These modifications involve annealing the float, which will reduce the maximum working pressure of the float to about half its normal value. Consult Armstrong Application Engineering for allowable working pressures.

Table LD-26. Ref	Table LD-26. Reference Data											
Model No.	Float Diameter	Unbalanced Float Weight										
2313-HLS 2413-HLS 25133G-HLS	3-1/2" (89 mm)	4 oz (113 g)										
2315-HLS 2415-HLS 25155G-HLS 26155G-HLS	4" (102 mm)	4-1/2 oz (128 g)										
2316-HLS 2416-HLS	5" (127 mm)	6 oz (170 g)										

Table LD-27. Maximum Operating Pressures for Handling Different Specific Gravity Liquids With Orifices Available in High Leverage Drain	Traps
(See pages LD-29 and LD-30.)	

(See page	s LD-29 a		30.)																								
Madal	Sp. Grav.	1.0	0	.9	5	.9	0	.8	5	.8	0	.7	5	.7	0	.6	5	.6	0	.5	5	.5	0	.4	5		40
Model No.	Orifice										Maxi	mum Op	erating	Pressur	e psig	(bar) at	100°F	(38°C)									
110.	in	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar
	1/16	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	630	43
	5/64	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	940	65	670	47	410	29
2313-HLS	3/32	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	850	58	660	46	480	33	290	20
	7/64	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	910	63	770	53	630	44	490	34	360	25	220	15
	1/8	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	920	63	810	56	700	48	600	41	490	34	380	26	280	19	170	11.7
	3/32	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	960	66
2315-HLS	1/8	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	900	62	730	50	550	38
2310-1123	5/32	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	930	64	810	56	700	48	590	40	470	33	360	25
	3/16	1,000	69	1,000	69	1,000	69	970	67	890	61	810	56	730	50	650	45	570	39	490	34	410	28	330	23	250	17
	3/32	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69
	1/8	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69
2316-HLS	5/32	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69
	3/16	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	830	57
	7/32	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	1,000	69	880	61	750	52	620	43
	1/16	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,420	98	1,020	71	630	43
2413-HLS	5/64	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,460	101	1,200	83	940	65	670	47	410	29
2410-11L0	3/32	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,500	103	1,400	97	1,220	84	1,030	71	850	58	660	46	480	33	290	20
	7/64	1,500	103	1,500	103	1,500	103	1,460	101	1,320	91	1,180	82	1,050	72	910	63	770	53	630	44	490	34	360	25	220	15
	3/32	1,800	124	1,800	124	1,800	124	1,800	124	1,800	124	1,800	124	1,800	124	1,800	124	1,800	124	1,800	124	1,560	108	1,260	87	960	66
2415-HLS	1/8	1,800	124	1,800	124	1,800	124	1,800	124	1,800	124	1,780	122	1,600	110	1,430	98	1,250	86	1,080	74	900	62	730	50	550	38
2410 1120	5/32	1,720	119	1,610	111	1,490	103	1,380	95	1,270	87	1,150	80	1,040	72	930	64	810	56	700	48	590	40	470	33	360	25
	3/16	1,210	83	1,130	78	1,050	72	970	67	890	61	810	56	730	50	650	45	570	39	490	34	410	28	330	23	250	17
	3/32	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110
	1/8	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110
2416-HLS	5/32	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,480	102	1,220	84
	3/16	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,580	109	1,400	97	1,220	84	1,040	72	860	59
	7/32	1,600	110	1,600	110	1,600	110	1,600	110	1,600	110	1,570	108	1,440	99	1,300	90	1,170	81	1,040	71	900	62	770	53	640	44
	1/16	2,120	146	2,120	146	2,120	146	2,120	146	2,120	146	2,120	146	2,120	146	2,120	146	2,120	146	1,820	125	1,420	98	1,020	71	630	43
25133G-	5/64	2,120	146	2,120	146	2,120	146	2,120	146	2,120	146	2,120	146	1,980	137	1,720	119	1,460	101	1,200	83	940	65	670	47	410	29
HLS	3/32	2,120	146	2,120	146	2,120	146	1,960	135	1,770	122	1,590	110	1,400	97	1,220	84	1,030	71	850	58	660	46	480	33	290	20
	7/64	1,870	129	1,740	120	1,600	110	1,460	101	1,320	91	1,180	82	1,050	72	910	63	770	53	630	44	490	34	360	25	220	15
	5/64	2,520	174	2,520	174	2,520	174	2,520	174	2,520	174	2,520	174	2,520	174	2,520	174	2,520	174	2,520	174	2,210	152	1,780	123	1,350	93
25155G-	3/32	2,520	174	2,520	174	2,520	174	2,520	174	2,520	174	2,520	174	2,520	174	2,470	170	2,170	150	1,870	129	1,560	108	1,260	87	960	66
HLS	1/8	2,520	174	2,470	171	2,300	159	2,130	147	1,950	135	1,780	122	1,600	110	1,430	98	1,250	86	1,080	74	900	62	730	50	550	38
	5/32	1,720	119	1,610	111	1,490	103	1,380	95	1,270	87	1,150	80	1,040	72	930	64	810	56	700	48	590	40	470	33	360	25
	3/16	1,210	83	1,130	78	1,050	72	970	67	890	61	810	56	730	50	650	45	570	39	490	34	410	28	330	23	250	17
	5/64	3,700	255	3,700	255	3,700	255	3,700	255	3,700	255	3,700	255	3,700	255	3,490	241	3,060	211	2,630	182	2,210	152	1,780	123	1,350	93
26155G-	3/32	3,700	255	3,700	255	3,700	255	3,680	254	3,380	233	3,080	212	2,770	191	2,470	170	2,170	150	1,870	129	1,560	108	1,260	87	960	66
HLS	1/8	2,650	183	2,470	171	2,300	159	2,130	147	1,950	135	1,780	122	1,600	110	1,430	98	1,250	86	1,080	74	900	62	730	50	550	38
-	5/32	1,720	119	1,610	111	1,490	103	1,380	95	1,270	87	1,150	80	1,040	72	930	64	810	56	700	48	590	40	470	33	360	25
	3/16	1,210	83	1,130	78	1,050	72	970	67	890	61	810	56	730	50	650	45	570	39	490	34	410	28	330	23	250	17
Specific	Gravity	1.0	0	.9	5	.9	0	.8	5	.8	0	.7	5	.7	0	.6	5	.6	0	.5	5	.5	0	.4	5		40


NOTE: If actual specific gravity falls between those shown in above table, use next lower. For example, if actual gravity is 0.73, use 0.70 data.


High Leverage Spring-Loaded Ball Float Type Drain Traps

For Low Flows at Pressures to 3,700 psi (255 bar) and Specific Gravity Down to 0.40

List of Materials

Table LD-28.					
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket
2313-HLS 2315-HLS 2316-HLS				ASTM A105 Forged Steel	
2413-HLS 2415-HLS 2416-HLS 25133G-HLS 25155G-HLS 26155G-HLS	Sta	inless Steel		ASTM A182 Grade F22 Forged Steel	Compressed Asbestos-free

For a fully detailed certified drawing, refer to CD #1074.

Physical Data

Table LD-2	29. High	ı Leve	rage Sp	ring-L	oaded B	all F	loat Type	Drain Tra	ps									
Model No.	2313-	HLS†	2315-	HLS	2316-	HLS	2413-	HLS†	2415-	HLS†	2416-l	ILS	25133	G-HLS	25155	G-HLS	26155G	-HLS
	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Pipe Connections	1/2, 3/4, 1	15, 20, 25	1, 1-1/4, 1-1/2	25, 32, 40	1-1/2, 2	40, 50	1/2, 3/4, 1	15, 20, 25	1, 1-1/4, 1-1/2	25, 32, 40	1-1/2, 2	40, 50	1/2, 3/4, 1	15, 20, 25	3/4, 1, 1-1/4	20, 25, 32	1, 1-1/4, 1-1/2	25, 32, 40
"A"	8	203	9-3/4	248	11-7/8	302	8-5/8	219	10-3/4	273	12-1/2	318	8-1/2	216	10-3/8	263	11-3/4	298
"В"	11-9/16	294	15-1/16	383	17-1/8	435	11-7/8	3002	15	381	17-3/4	451	14-1/4	362	16-7/32	412	24-1/8	613
"D"	6-1/16	154	7-13/16	198	9	229	5-3/8	137	7-1/4	184	9	229	3	75	4	102	5	127
"G"	5-1/8	130	6-7/8	175	8-3/8	213	5-3/8	137	6-7/8	175	8-5/8	219	5-3/4	146	7-3/8	187	8-3/8	213
"K"	1-7/16	37	1-3/4	44	2-1/8	54	1-7/16	37	1-3/4	44	2-1/8	54	1-5/16	33	1-3/4	44	1-3/4	44
"L"	3-7/8	98	4-11/16	119	5-3/4	146	4	102	4-13/16	122	5-13/16	148	—	—	—	—	—	—
Weight, Ibs (kg)	46 (21)	98 (4	44)	160 (73)	69 (31)	130 (59)	210 (9	95)	113	(51)	171	(78)	325 (1-	47)
Maximum Allowable Pressure (Vessel Design)	1,000 psig @ 100°F (69 bar @ 38°C) 600 psig @ 750°F (41 bar @ 400°C)							(125 bar @ (62 bar @ 4		2,120 psig (146 bar 1,700 psig (117 bar @	@ 38°C) @ 900°F	2,520 psig (174 bar 2,000 psig (138 bar @	@ 38°C) @ 900°F	3,700 psig @ (255 bar @ 3,000 psig @ (207 bar @	2 38°C) @ 900°F			

Note: Available with screwed, socketweld or flanged connections.

† Available with cast 316 stainless steel body and all stainless steel internals. Consult factory.

Free Floating Lever Dual Gravity Drain Traps

For Pressures to 1,000 psig (69 bar)

Armstrong free floating lever dual gravity drain traps are identical to the units described on pages LD-38 and LD-40 except float weights are modified to make them suitable for draining water from a light liquid. If you wish to use them for draining any liquid with specific gravity other than 1.00, consult the Armstrong Application Engineering Department.

Floats for dual gravity drain traps are weighted with quenching oil which, in the unlikely possibility of float failure, may be dispersed through the system. If this is a hazard, consult the Armstrong Application Engineering Department.

NOTE: Armstrong can design dual gravity traps for venting light liquids from above heavier liquids. Consult the Armstrong Application Engineering Department.

Viscosity Considerations for Dual Gravity Traps

The operation of dual gravity traps depends upon a float that will sink in the light liquid and float in the heavy liquid. When the specific gravities of the two liquids are very close, the available operating forces are, therefore, also very small. Viscous fluids may impair the ability of the trap to respond to changing liquid levels.

Consult Armstrong's Application Engineering Department if your application involves fluids more viscous than 70 cs, which is approximately the viscosity of a light machine oil.

Table LD-30. Maximum Operating Pressures for Draining Water From Different Specific Gravity Liquids With Orifices Available in Dual Gravity Drain Traps (See pages LD-29 and LD-30.)

nd LD-30.)	5	0	5	5	6	0		55	-	70		75		on		05		
	11	U	10	4		19					Z	42	2	5/	<u> </u>	/1		
Orifice (in)	neia	har	neia	har	neia	har			<u> </u>		neia	har	neia	har	neia	har		
5/16													psig	Udi	psig	Udi		
													6	0.4				
					-				-					1				
									-						1			
						-												
					-	-				-								
				-									-					
	25	1.6	20	1.4	18	1.2	15	1.0		0.9	10	0.7	7	0.5	_	_		
1/4	40	2.6	35	2.4	30	2.0	25	1.8	22	1.4	18	1.2	12	0.8	8	0.5		
3/16	90	6.0	75	5.0	65	4.6	55	3.8	45	3.2	35	2.6	25	1.8	18	1.2		
5/32	150	10	130	9.0	110	8.0	100	6.5	80	5.5	65	4.4	45	3.2	30	2.0		
1/8	250	17	225	15	200	13	170	11	140	9.5	110	7.5	80	5.5	50	3.4		
7/64	325	22	275	20	250	17	225	15	180	12	140	9.5	100	7.0	65	4.4		
Sp. Grav.	.5	0	.5	5	.6	0		65		70		75		80		85	.9	0
Float Wt, oz																	19	
	31	7	34	5	37	3	4					58	4	86	5	14	54	2
	<u> </u>											r		·		·		
													-	—	-	—	_	-
																_		-
	-	-															—	-
																	_	-
																		-
																		0.45
												-						0.7
																		1.0
																		2.2 2.8
								-									-	
	-	-			-	-												
,																		
	1,4	00	1,0		1,1	00	1,1		<u>´</u>		<u> </u>		٤,	010	2,	100	2,0	54
	10	0.0	10	0.0	10	0.7	0				1	0.4	1	1				<u> </u>
									-				7	0.5		0.35		
																	_	
												-					6	0.4
9/16	40 60	4.2	40 55	2.0	50	2.0 3.4	30 40	2.2	35	2.4	30	2.0	22	1.4	12	1.0	8	0.4
9/10 1/2	90	6.0	80	5.0 5.5	70	4.8	40 60	4.2	50 50	3.4	40	2.0 2.8	30	2.2	22	1.0 1.4	° 12	0.5
	30	0.0	110	8.0	100	7.0	90	6.0	70	5.0	60	4.0	45	3.0	30	2.0	15	1.2
	130	90				11	140	9.5	110	8.0	90	6.5	70	4.8	50	3.2	25	1.8
7/16	130 200	9.0 14		12	160													
7/16 3/8	200	14	180	12 16	160 200													
7/16 3/8 11/32	200 275	14 18	180 250	16	200	14	180	12	150	10	120	8.5	90	6.5	65	4.4	35	2.4
7/16 3/8 11/32 5/16	200 275 350	14 18 24	180 250 300	16 22	200 275	14 19	180 225	12 16	150 190	10 13	120 160	8.5 11	90 120	6.5 8.0	65 80	4.4 5.5	35 45	2.4 3.0
7/16 3/8 11/32 5/16 9/32	200 275 350 450	14 18 24 32	180 250 300 400	16 22 28	200 275 350	14 19 24	180 225 300	12 16 20	150 190 250	10 13 18	120 160 200	8.5 11 14	90 120 160	6.5 8.0 11	65 80 110	4.4 5.5 7.5	35 45 60	2.4 3.0 4.0
7/16 3/8 11/32 5/16	200 275 350	14 18 24	180 250 300	16 22	200 275	14 19	180 225	12 16	150 190	10 13	120 160	8.5 11	90 120	6.5 8.0	65 80	4.4 5.5	35 45	2.4 3.0
	3/16 5/32 1/8 7/64 Sp. Grav. Float Wt, oz Float Wt, oz Float Wt, g 0rifice (in) 1/2 3/8 5/16 9/32 1/4 7/32 3/16 5/32 1/8 7/64 Sp. Grav. Float Wt, oz Float Wt, g 0rifice (in) 1-1/16 7/8 3/4 5/8	Float Wt, oz 6. Float Wt, g 17 Orifice (in) psig 5/16 15 1/4 25 3/16 50 5/32 90 1/8 150 7/64 190 Sp. Grav. .5 Float Wt, oz 8. Float Wt, oz 8. Float Wt, oz 14 0'fice (in) 5/16 5/32 150 5/16 25 1/4 40 3/16 90 5/32 150 1/4 40 3/16 90 5/32 150 1/8 250 7/64 325 Sp. Grav. .5 Float Wt, oz 11 7/32 110 3/16 170 5/32 275 1/4 80 9/32 55 1/4 80 7/64<	Float Wt, oz 6.0 Float Wt, g 170 Orifice (in) psig bar 5/16 15 1.0 1/4 25 1.6 3/16 50 3.6 5/32 90 6.0 1/8 150 10 7/64 190 13 Sp. Grav. .50 Float Wt, oz 8.8 Float Wt, g 248 Orifice (in) 5/16 25 1.6 5/16 25 1.6 1/4 40 2.6 3/16 90 6.0 5/32 10 1/4 5/32 150 10 1/8 250 17 7/64 325 22 Sp. Grav. .50 Float Wt, oz 11.2 Float Wt, oz 11.2 0.8 3/8 25 1.8 5/16 40 2.8 9/32 55 3.6 1/4 80 5.5 7/32 <td>Float Wt, oz 6.0 6. Float Wt, g 170 18 Orifice (in) psig bar psig. 5/16 15 1.0 12 1/4 25 1.6 20 3/16 50 3.6 45 5/32 90 6.0 75 1/8 150 10 130 7/64 190 13 170 Sp. Grav. .50 .5 5 Float Wt, oz 8.8 9.9 Float Wt, oz 8.8 9.9 5/16 25 1.6 20 1/4 40 2.6 35 3/16 90 6.0 75 5/32 150 10 130 1/8 250 17 225 5/64 325 22 275 Sp. Grav. .50 .5 70 1/8 255 3.6 45 9/32<!--</td--><td>Float Wt, oz 6.0 6.5 Float Wt, g 170 184 Orifice (in) psig bar psig bar 5/16 15 1.0 12 0.9 1/4 25 1.6 20 1.4 3/16 50 3.6 45 3.0 5/32 90 6.0 75 5.5 1/8 150 10 130 9.0 7/64 190 13 170 12 Sp. Grav. .50 .55 5.5 5.5 Float Wt, oz 8.8 9.6 75 5.0 5/32 150 10 130 9.0 5/32 150 10 130 9.0 1/8 250 17 225 15 7/64 325 22 275 20 Sp. Grav. .50 .55 5 1.6 5/16 40 2.8 35 2.4</td><td>Float Wt, oz 6.0 6.5 7. Float Wt, g 170 184 19 Orifice (in) psig bar psig bar psig 5/16 15 1.0 12 0.9 10 1/4 25 1.6 20 1.4 18 3/16 50 3.6 45 3.0 40 5/32 90 6.0 75 5.5 65 1/8 150 10 130 9.0 110 7/64 190 13 170 12 150 Sp. Grav. .50 .55 5.0 65 Float Wt, oz 8.8 9.6 10 10 1/4 40 2.6 35 2.4 30 3/16 90 6.0 75 5.0 65 5/32 150 10 130 9.0 110 1/8 250 17 225 15</td><td>Float Wt, oz 6.0 6.5 7.0 Float Wt, g 170 184 199 Orifice (in) psig bar psig bar psig bar 5/16 15 1.0 12 0.9 10 0.7 1/4 25 1.6 20 1.4 18 1.2 3/16 50 3.6 45 3.0 40 2.6 5/32 90 6.0 75 5.5 65 4.6 1/8 150 10 130 9.0 110 8.0 7/64 190 13 170 12 150 10 Sp. Grav. .50 .55 .60 .60 75 5.0 65 4.6 5/32 150 10 130 9.0 110 8.0 2.0 3/16 90 6.0 75 5.0 65 4.6 5/32 150 10 130</td><td></td><td></td><td>Float Wt, oz 6.0 6.5 7.0 7.5 8 Float Wt, g 170 184 199 213 2 Orifice (in) psig bar psig bar psig bar psig bar psig bar psig bar psig 5/16 15 1.0 12 0.9 10 0.7 9 0.6 7 1/4 25 1.6 20 1.4 18 1.2 15 1.0 12 5/32 90 6.0 75 5.5 6.5 4.6 55 7.5 7/64 190 13 170 12 150 10 120 8.5 100 Spig bar 9.6 0.3 11.1 11 11 11 11 11 11 11 11 12 Float Wt, g 25 1.6 20 1.4 18 1.2 15 1.8 22</td><td></td><td></td><td></td><td>Float Wt, oz 6.0 6.5 7.0 7.5 8.0 8.5 9 Float Wt, g 170 184 199 213 228 242 2 orifice (in) psiq bar psiq</td><td>Float Wt, og 6.0 6.5 7.0 7.5 8.0 8.5 9.1 Float Wt, og 170 184 199 213 228 242 257 Drifice (in) psig bar psig<td>Float Wt, og 6.0 6.5 7.0 7.5 8.0 8.5 9.1 9.1 Pice Float Wt, og 17 9.1 9213 228 224 257 2 ortifice (in) psig bar psig psig bar</td><td>Find Wi, no: 6.0 6.5 7.0 7.5 8.0 8.7 9.5 9.7 271 Prior Wi, g 19 213 228 242 257 271 Orifice (in) psig bar psig bar psig bar psig bar psig bar psig bar bar bar</td><td></td></td></td>	Float Wt, oz 6.0 6. Float Wt, g 170 18 Orifice (in) psig bar psig. 5/16 15 1.0 12 1/4 25 1.6 20 3/16 50 3.6 45 5/32 90 6.0 75 1/8 150 10 130 7/64 190 13 170 Sp. Grav. .50 .5 5 Float Wt, oz 8.8 9.9 Float Wt, oz 8.8 9.9 5/16 25 1.6 20 1/4 40 2.6 35 3/16 90 6.0 75 5/32 150 10 130 1/8 250 17 225 5/64 325 22 275 Sp. Grav. .50 .5 70 1/8 255 3.6 45 9/32 </td <td>Float Wt, oz 6.0 6.5 Float Wt, g 170 184 Orifice (in) psig bar psig bar 5/16 15 1.0 12 0.9 1/4 25 1.6 20 1.4 3/16 50 3.6 45 3.0 5/32 90 6.0 75 5.5 1/8 150 10 130 9.0 7/64 190 13 170 12 Sp. Grav. .50 .55 5.5 5.5 Float Wt, oz 8.8 9.6 75 5.0 5/32 150 10 130 9.0 5/32 150 10 130 9.0 1/8 250 17 225 15 7/64 325 22 275 20 Sp. Grav. .50 .55 5 1.6 5/16 40 2.8 35 2.4</td> <td>Float Wt, oz 6.0 6.5 7. Float Wt, g 170 184 19 Orifice (in) psig bar psig bar psig 5/16 15 1.0 12 0.9 10 1/4 25 1.6 20 1.4 18 3/16 50 3.6 45 3.0 40 5/32 90 6.0 75 5.5 65 1/8 150 10 130 9.0 110 7/64 190 13 170 12 150 Sp. Grav. .50 .55 5.0 65 Float Wt, oz 8.8 9.6 10 10 1/4 40 2.6 35 2.4 30 3/16 90 6.0 75 5.0 65 5/32 150 10 130 9.0 110 1/8 250 17 225 15</td> <td>Float Wt, oz 6.0 6.5 7.0 Float Wt, g 170 184 199 Orifice (in) psig bar psig bar psig bar 5/16 15 1.0 12 0.9 10 0.7 1/4 25 1.6 20 1.4 18 1.2 3/16 50 3.6 45 3.0 40 2.6 5/32 90 6.0 75 5.5 65 4.6 1/8 150 10 130 9.0 110 8.0 7/64 190 13 170 12 150 10 Sp. Grav. .50 .55 .60 .60 75 5.0 65 4.6 5/32 150 10 130 9.0 110 8.0 2.0 3/16 90 6.0 75 5.0 65 4.6 5/32 150 10 130</td> <td></td> <td></td> <td>Float Wt, oz 6.0 6.5 7.0 7.5 8 Float Wt, g 170 184 199 213 2 Orifice (in) psig bar psig bar psig bar psig bar psig bar psig bar psig 5/16 15 1.0 12 0.9 10 0.7 9 0.6 7 1/4 25 1.6 20 1.4 18 1.2 15 1.0 12 5/32 90 6.0 75 5.5 6.5 4.6 55 7.5 7/64 190 13 170 12 150 10 120 8.5 100 Spig bar 9.6 0.3 11.1 11 11 11 11 11 11 11 11 12 Float Wt, g 25 1.6 20 1.4 18 1.2 15 1.8 22</td> <td></td> <td></td> <td></td> <td>Float Wt, oz 6.0 6.5 7.0 7.5 8.0 8.5 9 Float Wt, g 170 184 199 213 228 242 2 orifice (in) psiq bar psiq</td> <td>Float Wt, og 6.0 6.5 7.0 7.5 8.0 8.5 9.1 Float Wt, og 170 184 199 213 228 242 257 Drifice (in) psig bar psig<td>Float Wt, og 6.0 6.5 7.0 7.5 8.0 8.5 9.1 9.1 Pice Float Wt, og 17 9.1 9213 228 224 257 2 ortifice (in) psig bar psig psig bar</td><td>Find Wi, no: 6.0 6.5 7.0 7.5 8.0 8.7 9.5 9.7 271 Prior Wi, g 19 213 228 242 257 271 Orifice (in) psig bar psig bar psig bar psig bar psig bar psig bar bar bar</td><td></td></td>	Float Wt, oz 6.0 6.5 Float Wt, g 170 184 Orifice (in) psig bar psig bar 5/16 15 1.0 12 0.9 1/4 25 1.6 20 1.4 3/16 50 3.6 45 3.0 5/32 90 6.0 75 5.5 1/8 150 10 130 9.0 7/64 190 13 170 12 Sp. Grav. .50 .55 5.5 5.5 Float Wt, oz 8.8 9.6 75 5.0 5/32 150 10 130 9.0 5/32 150 10 130 9.0 1/8 250 17 225 15 7/64 325 22 275 20 Sp. Grav. .50 .55 5 1.6 5/16 40 2.8 35 2.4	Float Wt, oz 6.0 6.5 7. Float Wt, g 170 184 19 Orifice (in) psig bar psig bar psig 5/16 15 1.0 12 0.9 10 1/4 25 1.6 20 1.4 18 3/16 50 3.6 45 3.0 40 5/32 90 6.0 75 5.5 65 1/8 150 10 130 9.0 110 7/64 190 13 170 12 150 Sp. Grav. .50 .55 5.0 65 Float Wt, oz 8.8 9.6 10 10 1/4 40 2.6 35 2.4 30 3/16 90 6.0 75 5.0 65 5/32 150 10 130 9.0 110 1/8 250 17 225 15	Float Wt, oz 6.0 6.5 7.0 Float Wt, g 170 184 199 Orifice (in) psig bar psig bar psig bar 5/16 15 1.0 12 0.9 10 0.7 1/4 25 1.6 20 1.4 18 1.2 3/16 50 3.6 45 3.0 40 2.6 5/32 90 6.0 75 5.5 65 4.6 1/8 150 10 130 9.0 110 8.0 7/64 190 13 170 12 150 10 Sp. Grav. .50 .55 .60 .60 75 5.0 65 4.6 5/32 150 10 130 9.0 110 8.0 2.0 3/16 90 6.0 75 5.0 65 4.6 5/32 150 10 130			Float Wt, oz 6.0 6.5 7.0 7.5 8 Float Wt, g 170 184 199 213 2 Orifice (in) psig bar psig bar psig bar psig bar psig bar psig bar psig 5/16 15 1.0 12 0.9 10 0.7 9 0.6 7 1/4 25 1.6 20 1.4 18 1.2 15 1.0 12 5/32 90 6.0 75 5.5 6.5 4.6 55 7.5 7/64 190 13 170 12 150 10 120 8.5 100 Spig bar 9.6 0.3 11.1 11 11 11 11 11 11 11 11 12 Float Wt, g 25 1.6 20 1.4 18 1.2 15 1.8 22				Float Wt, oz 6.0 6.5 7.0 7.5 8.0 8.5 9 Float Wt, g 170 184 199 213 228 242 2 orifice (in) psiq bar psiq	Float Wt, og 6.0 6.5 7.0 7.5 8.0 8.5 9.1 Float Wt, og 170 184 199 213 228 242 257 Drifice (in) psig bar psig <td>Float Wt, og 6.0 6.5 7.0 7.5 8.0 8.5 9.1 9.1 Pice Float Wt, og 17 9.1 9213 228 224 257 2 ortifice (in) psig bar psig psig bar</td> <td>Find Wi, no: 6.0 6.5 7.0 7.5 8.0 8.7 9.5 9.7 271 Prior Wi, g 19 213 228 242 257 271 Orifice (in) psig bar psig bar psig bar psig bar psig bar psig bar bar bar</td> <td></td>	Float Wt, og 6.0 6.5 7.0 7.5 8.0 8.5 9.1 9.1 Pice Float Wt, og 17 9.1 9213 228 224 257 2 ortifice (in) psig bar psig psig bar	Find Wi, no: 6.0 6.5 7.0 7.5 8.0 8.7 9.5 9.7 271 Prior Wi, g 19 213 228 242 257 271 Orifice (in) psig bar psig bar psig bar psig bar psig bar psig bar bar bar	

NOTE: If actual specific gravity falls between those shown in the above table, use the next higher gravity. For example, if actual gravity is 0.73, use 0.75 gravity data *For vessel pressures above 250 psig (17 bar), always use steel drain traps.

armstronginternational.com

Free Floating Lever Dual Gravity Drain Traps

For Pressures to 1,000 psig (69 bar)

List of Materials

Table LD-	31.				
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket
2-DG 3-DG 6-DG	Cto	inless Steel		Cast Iron ASTM A48 Class 30	Compressed
32-DG 33-DG 36-DG	JId	IIIIIESS SIEEI		Forged Steel ASTM A105	Asbestos-free

For information on special materials, consult the Armstrong Application Engineering Department.

For a fully detailed certified	drawing, refer to:
No. 2-DG, 3-DG, 6-DG	CD #1034
No. 32-DG, 33-DG, 36-DG	CD #1035

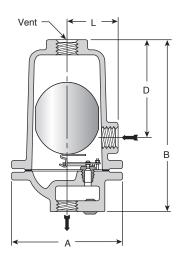


Figure LD-43. No. 2-DG, 3-DG and 6-DG cast iron dual gravity drain traps.

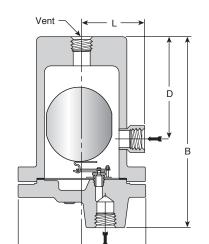


Figure LD-44. No. 32-DG, 33-DG and 36-DG Forged steel dual gravity drain traps. Socketweld or flanged connections are also available.

Κ

Table LD-32. Armstrong F	Free Floa	ting Lev	er Dual G	ravity Dra	ain Traps							
			Cast	Iron				Forge	d Steel			
Model No.	2-D)G	3-1	DG	6-D	G	32-[)G*	33-E)G*	36-D	G*
Pipe Connections	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
	1/2, 3/4	15, 20	1/2, 3/4, 1	15, 20, 25	1-1/2, 2	40, 50	1/2, 3/4, 1	15, 20, 25	1/2, 3/4, 1	15, 20, 25	1-1/2, 2	40, 50
"A"	5-1/4	133	6-3/8	161	10-3/16	259	6-3/4	171	8	203	11-7/8	302
"В"	8-3/4	222	11-1/2	292	18	457	10-3/16	259	11-9/16	297	17-1/8	435
"D"	5-1/8	103	7	188	9-3/8	238	5-9/16	141	6-1/16	154	9	229
"K"	—	—		_	—	_	1-1/4	32	1-7/16	37	2-1/8	54
"L"	2-7/16	62	2-7/8	73	4-5/8	117	3-3/8	86	3-7/8	98	6-1/16	154
Approx. Wt. Ibs (kg)	12 (5	5.5)	21 (9.5)	78 (3	5.5)	31 (14)	49 (22)			
Maximum Allowable Pressure (Vessel Design)		250 p	sig @ 450°F	(17 bar @ 2	232°C)		600 psig @ 100°F 500 psig @ 750°F		1,000 psig @ 100°F (69 bar @ 38°C) 600 psig @ 750°F (41 bar @ 400°C)			

* Available in Type 316 stainless steel. Consult factory.

Physical Data

Armstrong ultra-capacity ball float drain traps are designed to meet exceptionally large capacity needs in draining water and other liquids from air or other gases under pressure.

Options. L and M Series drain traps are available with armored gauge glass with a maximum allowable pressure of 250 psig @

425°F (17 bar @ 218°C). When ordering, be sure to specify "Liquid Drainer" or "LD." Example, LS-series LD, 2" (50 mm) NPT, 7/8" orifice.

For a fully detailed certified drawing, refer to: L and M Series, CD #1010 JD and KD Series, CD #1302

Table LD-33	. Maximum Operat	ing Pre	ssure	s for Ha	andlin	ıg Diffe	rent S	pecific	Gravit	y Liqui	ds With	n Orific	es Ava	ilable i	n Ultra	-Capac	ity Dra	in Trap	os				
	Specific Gravity	1.0)0	.9	5	.9	0	3.	35		30		75	.7	'0		65		60		55	.5	50
Model No.	Orifice Size										Maximi	um Ope	erating	Pressu	re								
	in	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar	psig	bar
	1-1/16	16	1.0	15	1.0	13	0.89	12	0.82	11	0.75	10	0.69	9	0.62	7	0.48	6	0.41	5	0.34	4	0.28
	3/4	35	2.4	32	2.2	30	2.0	27	1.8	24	1.6	22	1.5	19	1.3	16	1.0	14	0.97	11	0.75	9	0.62
	9/16	87	6.0	81	5.5	75	5.0	68	4.6	61	4.2	55	3.8	48	3.3	41	2.8	35	2.4	28	1.8	22	1.5
JD	1/2	146	10	135	9.0	125	8.5	113	8.0	102	7.0	91	6.2	81	5.5	69	4.8	59	4.0	47	3.2	37	2.6
	7/16	175	12	175	12	175	12	175	12	158	11	141	10	125	8.5	107	7.3	91	6.2	73	5.0	57	3.9
	3/8	250	17	232	16	214	15	195	13	177	12.2	159	10.9	140	9.7	122	8.4	103	7.1	85	5.9	67	4.6
	1/4	300	21	300	21	300	21	300	21	300	20.7	300	20.7	300	20.7	300	20.7	272	18.8	224	15.4	176	12.1
30KD		30	2	30	2	30	2	30	2						—	—				_	—	—	_
50KD	1-7/8 dual orifice	50	3.5	50	3.5	50	3.5	50	3.5	—			—			—		—	—	_	—	—	—
300KD		300	21	300	21	300	21	300	21							—				_		—	
L	1-5/8	35	2.4	32	2.2	30	2.0	27	1.8	25	1.6	23	1.6	20	1.4	18	1.2	15	1.0	13	0.89	10	0.69
to 250 psi (17 bar)	1-1/8	116	8.0	108	7.4	100	7.0	92	6.3	84	5.8	76	5.2	68	4.7	60	4.1	52	3.6	44	3.0	36	2.5
` '	7/8	174	12	162	11	150	10.5	138	9.5	126	8.6	114	7.9	102	7.0	90	6.2	78	5.4	65	4.5	53	3.7
LS For all	11/16	*315	*22	*294	*20	*272	*19	250	17	228	16	206	14	184	13	162	11	141	9.7	119	8.2	97	6.7
Pressures	1/2	*450	*31	*450	*31	*450	*31	*450	*31	*450	*31	*400	*28	*354	*24	*298	*21	248	17	197	14	147	10
М																							
to 250 psi (17 bar)	1-7/8 dual orifice	250	17	250	17	250	17	250	17	-	-	-	-	-	-	-		-	-	-		-	-
MS For all Pressures	1-17/32 dual orifice	*450	*31	*450	*31	*450	*31	*450	*31	*450	*31	_	_	_	_	_	_	_	_	_	_	_	_

*These pressures applicable only to LS and MS models.

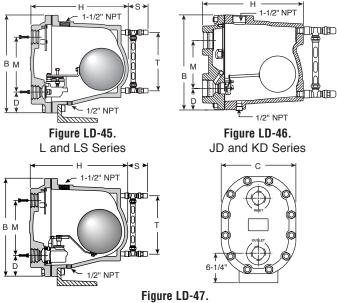
List of Materials

Table LD-34.			
Name o	of Dort	Material	
Name	Ji Fari	Series JD, KD, L & M	Series LS & MS
Con & Dody	JD, KD	ASTM A395 Ductile Iron	ASTM A216 Grade WCB
Cap & Body	L, M	ASTM A48 Class 31	
Can Extension*	L, LS	304 Stainless Steel, A	STM A351 Grade CF8
Cap Extension*	KD, M, MS	17-4 Ph, ASTM A7	47 Grade CB7Cu-1
Cap Bolting		ASTM A193 Grade B 7**	ASTM A193 Grade B 7
Cap Gaskets		Flexible	Graphite
Float Mechanism		Stainle	ss Steel

* JD Series does not have cap extension.

**JD and KD Series - ASTM A307 Grade B.

Physical Data


Table LD-36. Ultra-Capacity Drain Traps												
Trap Series	JD 8	k KD	L 8	έM	LS 8	MS						
liap Selles	in	mm	in	mm	in	mm						
"В"	13-1/16	332	20-1/4	514	20	508						
"C"	9-5/8	244	14-3/4	375	15-1/4	387						
"H"	13-7/8	352	19-3/4	502	20	508						
"M"	6-1/2	165	11-5/16	287	11-5/16	287						
"D"	3	76	4-3/16	106	4-3/16	106						
"S"	—	—	3-3/4	95	3-3/4	95						
"Т"	—	—	12	305	12	305						
Weight Ibs (kg)	100	(45)	196	(89)	290	(132)						
Max. Allow. Pressure (Vessel Design)	300 psig (21 bar @		250 psig (17 bar @	@ 450°F @ 232°C)	450 psig (31 bar @							

JD, KD, L and M Series also may be used for steam service as float and thermostatic traps and as condensate controllers. Steam service capacities for all configurations are given in the Steam Trapping section of this catalog.

Connections Available

Table LD-35						
Model	Si	ze	NPT	BSPT	SW	FLG
Mouer	in	mm		DOFI	310	FLU
JD	2	50	Х	Х	—	*
KD	2, 2-1/2, 3	50, 65, 80	Х	Х	_	*
L	2, 2-1/2	50, 65	Х	Х	_	Х
М	3	80	Х	Х	—	Х
LS	2, 2-1/2	50, 65	Х	Х	Х	Х
MS	3	80	Х	Х	Х	Х

*Flanged connections available. Consult factory.

M and MS Series

Installation and Maintenance of Drain Traps

For Draining Liquid From Gas...for Draining Water From Light Liquid

Installation Procedures

Pipe Fitting. Adhere to good piping practice. Clean pipes carefully after cutting and threading before hooking up traps. Before connecting traps to system, blow down at full pressure to clear the pipes of dirt, pipe cuttings and other foreign objects.

Strainers are necessary if there is a chance scale and sediment can be carried to the trap.

Blowdown Valves may prove useful.

Shutoff Valves & Unions should be provided so the drain trap can be examined and/or serviced without shutting down the unit drained.

Operation. Maximum operating pressure is stamped on the trap. Do not exceed this pressure.

- A. Ball float drain traps must be located below the drain point.
- **B.** Make inlet piping as short as possible with a minimum of elbows and other restrictions.
- C. Back venting usually required on ball float drain traps.
 - 1. Pressure vessels should be vented back to any convenient point above the liquid level. Use a full-ported valve in the back-vent line. On larger traps (6 and 36-LD and larger) use a minimum of 3/4" (20 mm) nominal pipe for back venting—1" (25 mm) or larger preferred for heavy loads. Remember, the pressure in the unit drained and in the drain trap are the same—only the difference in liquid levels produces flow.
 - 2. Separators and drip points should be vented to the downstream side of the unit.
 - 3. On very light loads, venting is not necessary, but use at least a 3/4" (20 mm) connection between the vessel and the trap. Make sure inlet line is vertical or pitched to trap.
 - 4. Float type drain traps do not require priming.

Typical installations of drain traps are shown in drawings in "Installation and Maintenance of Drain Traps" section.

Drain Trap Testing and Troubleshooting Testing Schedule

A regular schedule should be set up for testing and preventive maintenance. Size and operating pressure determine how frequently drain traps should be checked. Units on normal industrial applications should be checked as follows:

High Pressure Drain Traps—250 psig (17 bar) and up. Test daily to weekly.

Medium Pressure Drain Traps—60 to 250 psig (4 to 17 bar). Test weekly to monthly.

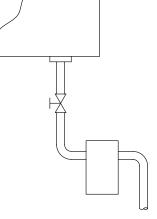
Low Pressure Drain Traps—1 to 60 psig (0.07 to 4 bar). Test monthly to annually. Large traps on high capacity jobs can be tested more frequently to good advantage. **Drain Traps** on gas and other critical applications should be checked at the same time valves and other line equipment are inspected. Your own experience will determine the required testing schedule.

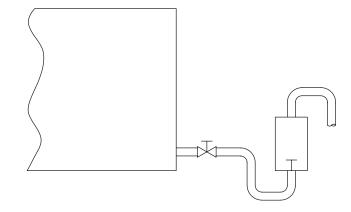
Troubleshooting

- A. Drain trap does not discharge.
 - 1. Insufficient liquid coming to drain trap to permit discharge. Continue operation.
 - 2. Drain trap filled with dirt or sludge. Remove cap and mechanism; clean thoroughly. Install strainer in inlet side of drain trap.
 - 3. Differential pressure across drain trap too high. Check inlet and outlet pressure. If the difference exceeds the maximum operating pressure stamped on the drain trap, the valve will remain closed. Reduce differential pressure if possible, or install properly sized mechanism in drain trap if possible.
 - 4. Worn valve seat. As the seat becomes worn, the seating surface area enlarges, lowering the trap's maximum operating pressure. Replace with new parts.
 - 5. Inlet or outlet line valves closed. Open valves.
 - 6. Strainer clogged. Clean strainer screen.
 - 7. Float defective or collapsed. Replace float.
- B. Drain trap discharges continuously.
 - 1. If drain trap discharges full stream of liquid continuously and vessel fills full of liquid
 - a. Drain trap too small for job. Replace with correct size.
 - b. Abnormal amounts of liquid coming to drain trap. Remedy cause or replace with drain trap that has a larger capacity and will handle peak loads.
- C. Drain trap blows through.
 - 1. Dirt or scale on valve or seat. Remove cap, clean drain trap, as well as valve and seat.
 - 2. Worn valve, or seat that is wire-drawn. Remove cap, replace mechanism.
 - 3. IB trap may lose its prime.
 - a. Close the inlet valve for a few minutes. Then gradually open. If the drain trap catches its prime, the chances are that the trap is all right.
 - b. Frequent loss of prime may require an internal check valve or, if trap is old, valve and seat may be worn.

In the event of any unusual maintenance or operational difficulty, consult your Armstrong Representative, or the Armstrong International Application Engineering Department.

Installation and Maintenance of Drain Traps


For Draining Liquid From Gas...for Draining Water From Light Liquid


Installation of Armstrong drain traps for the most satisfactory operation requires that a few simple rules be observed:

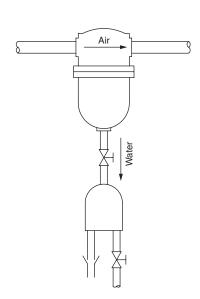
Clean Piping. First install piping and valve ahead of trap, then blow down at full air pressure to remove loose dirt. Last of all, screw the trap into position.

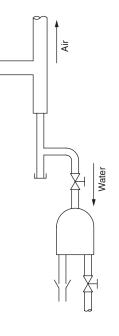
Location. Compressed drain traps should be located below and close to the unit being drained (See Figs. LD-48 and LD-50), or as directed by the equipment manufacturer. When headroom is inadequate, inverted bucket drain traps can be installed above the unit drained, but they must be equipped with a check valve in the inlet line (See Fig. LD-49). They should be accessible for maintenance. **Priming.** Prime bodies of inverted bucket drain traps before turning on the air. Ball float traps do not require priming.

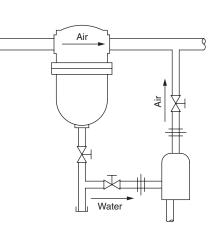
Back Venting (Ball Float Traps Only). Ordinarily a drain trap has little water to handle, and a single line to the *top of the trap* is sufficient. However, if a ball float trap must be installed at some distance from the drip point, or if there are large quantities of water to be discharged, back venting is good insurance for positive and fast flow of water to the drain (See Fig. LD-52). Be sure there are no pockets in the vent line in which water could collect and prevent venting (See Fig. LD-54). If high water level is objectionable, raise the receiver, or dig a pit so top of trap can be at the same level as the bottom of the drain line (See Fig. LD-53). Otherwise, use an inverted bucket trap that can be installed above the drip point (See Fig. LD-49).

Figure LD-48.

Standard hookup for inverted bucket drain trap BVSW. **Be sure to fill trap body with water before opening the** valve.

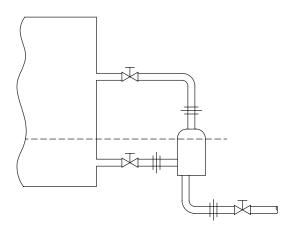

Figure LD-49.


The inverted bucket trap draining an air receiver where space limitations prevent installation below the receiver. Note trap should either have internal check valve or a swing check to prevent prime loss when air pressure drops.

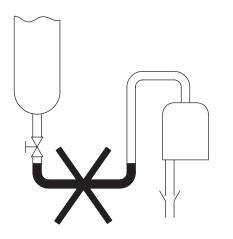

Installation and Maintenance of Drain Traps

For Draining Liquid From Gas...for Draining Water From Light Liquid

Figure LD-50.


Drain trap installed below an air line separator. Keep the pipe as short as possible.

Drain trap draining air line drip pocket. Be sure to use a gate valve and blow down the assembly before installing trap.


Figure LD-52.

Drain trap with vent line to downstream side of air separator to assure positive and fast flow of water to the trap. Note side inlet connection from separator.

Drain trap installed at side of receiver, close to floor. Water will rise to broken line before trap opens.

Figure LD-54.

Do not install a ball float trap above the drip point or put a loop or pocket in the line to the trap. The water seal prevents air from leaving trap body and allowing liquid to enter.

ADP-1 Pneumatically Operated Liquid Drainer Armstrong

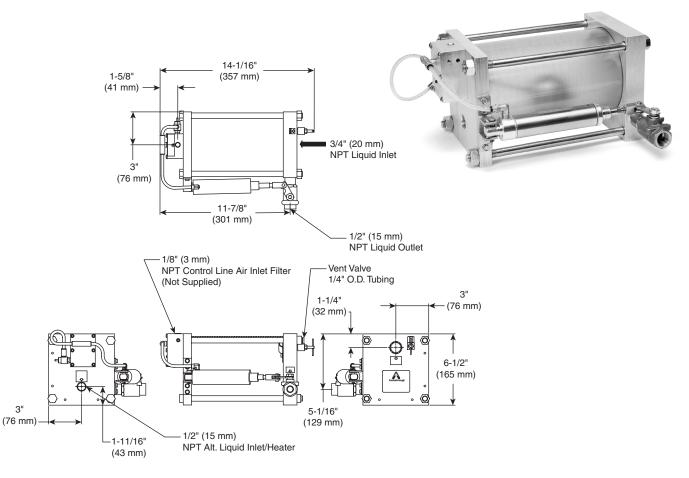
Armstrong's pneumatically operated liquid drainer with press-to-test actuator for compressed air wastes no air, and it provides automatic operation in a see-thru vessel. This liquid drainer is ideal for draining oil/water separators. Its low profile makes it easy to mount on base-mounted compressors, remote cooler packs, refrigerated air dryers and filters.

Features:

- · Convenient press-to-test actuator
- · Large 100-oz. see-thru reservoir
- Fully pneumatic
- · No wasted air
- · Extremely low profile
- · Ideal for oil/water separators
- Non-clogging ball valve
- No strainers to clean
- Automatic operation
- · Vent valve provided
- · Easy to retrofit

Options:

- Legs
- · Mechanical cycle counter
- Heater

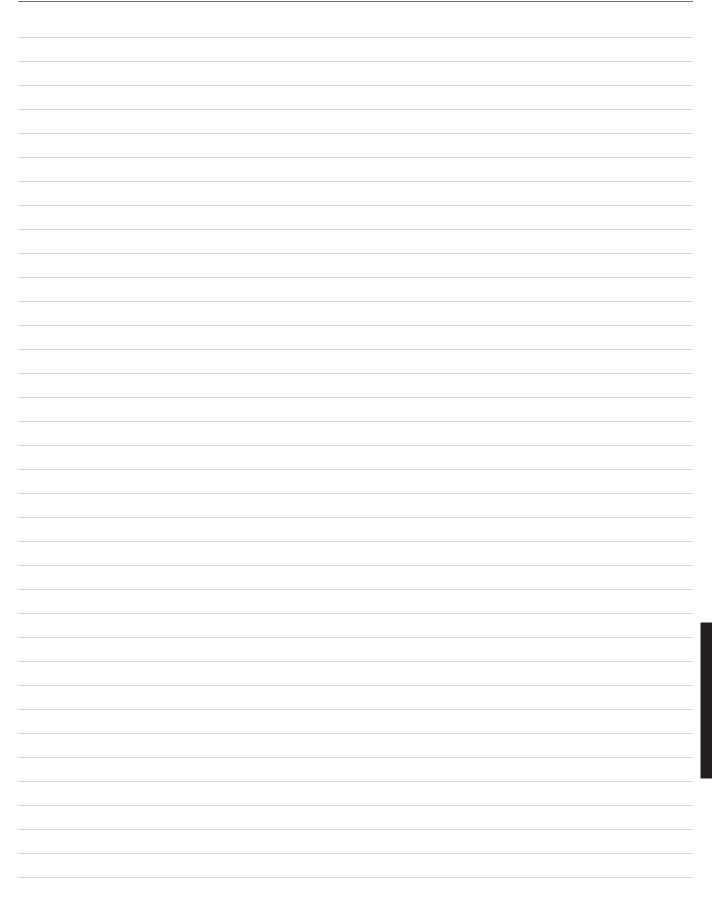

For a fully detailed certified drawing, refer to CD #1271.

List of Materials

Table LD-37.	
Name of Part	Material
Inlet and Outlet Heads	Aluminum ASTM B221 6061-T6511
Float and Leverage System	Stainless Steel
Reservoir	Fiberglass
Outlet Ball Valve	Bronze with Stainless Steel Ball and Stem
Air Cylinder	Stainless Steel
Optional Floor/Wall Mounts	Stainless Steel

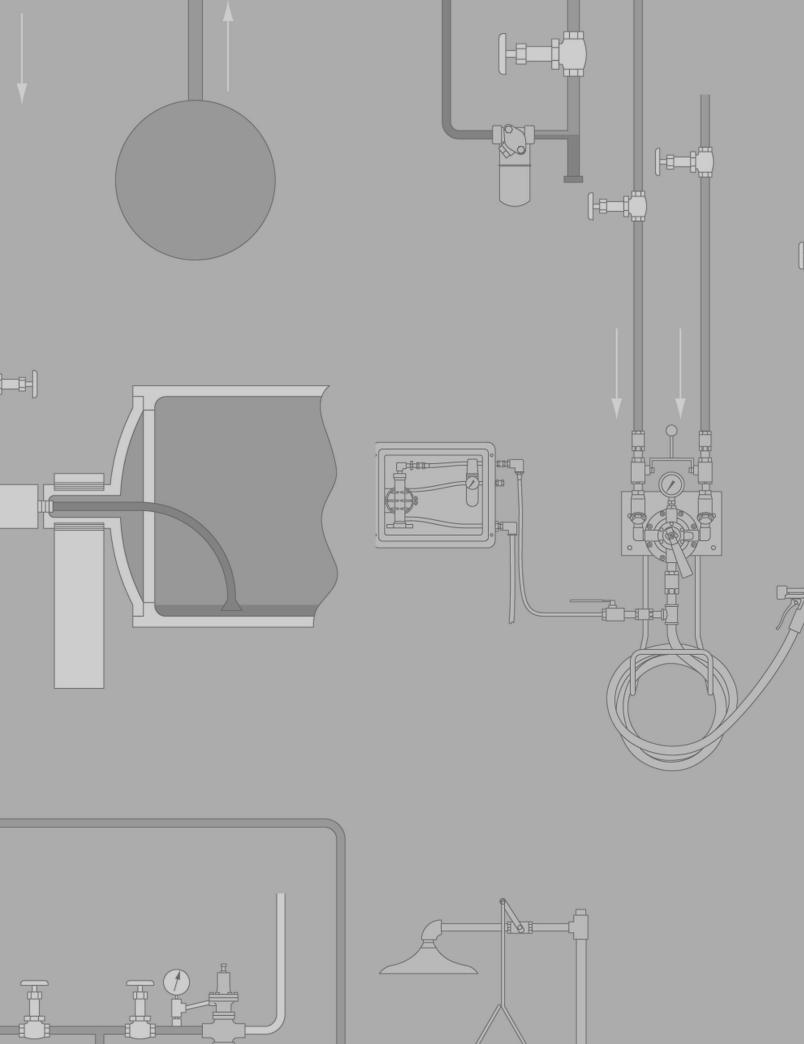
Physical Data

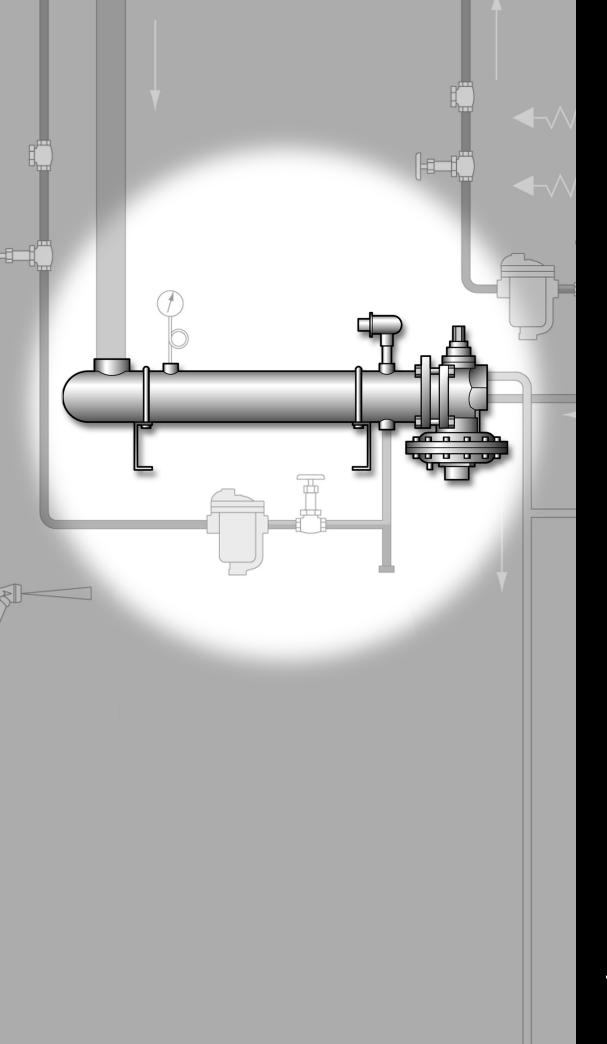
Table LD-38. Armstrong ADP-1 Pneumatically Operated Liquid DrainerSpecificationsinmmLiquid Outlet1/215Liquid Inlet3/420Alternate Liquid Inlet/Heater1/215Control Air Inlet1/83Vent Valve Connection1/4" OD TubingWeight, Ib (kg)14 (6.4)Maximum Operating Pressure180 psig (12 bar)Maximum Operating Temperature15000000000000000000000000000000000000						
Specifications	in	mm				
Liquid Outlet	1/2	15				
Liquid Inlet	3/4	20				
Alternate Liquid Inlet/Heater	1/2	15				
Control Air Inlet	1/8	3				
Vent Valve Connection	1/4" OD	Tubing				
Weight, Ib (kg)	14 (6.4)					
Maximum Operating Pressure	180 psig	(12 bar)				
Maximum Operating Temperature	150°F	(66°C)				
Capacity	1.5 lb liqui	d per cycle				
Maximum Control Air Pressure	80 - 12 (6 - 8.	1 0				



Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

3"


iquid Drainers



Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Liquid Drainers

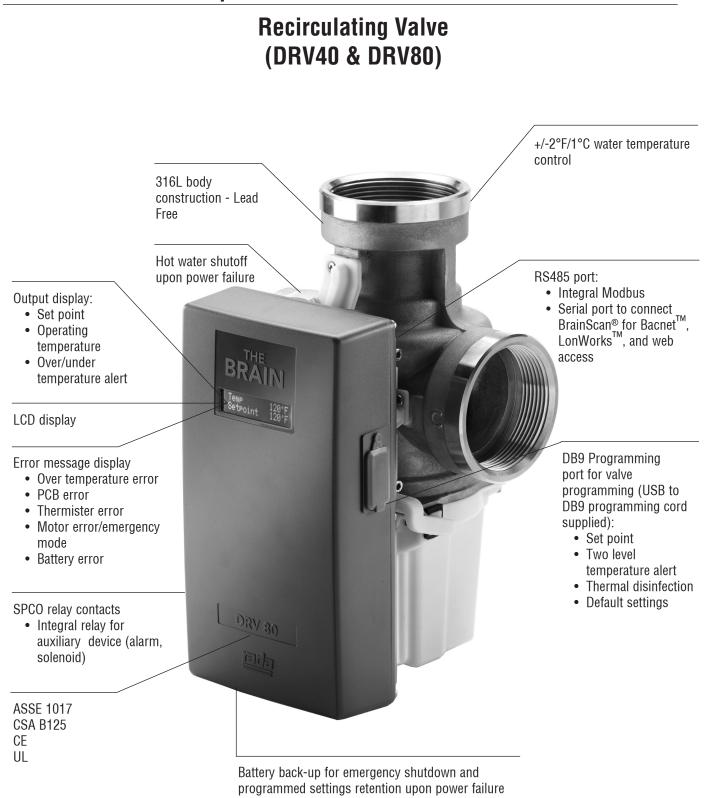
Institutional Hot Water

Armstrong

Armstrong[®] Water Temperature Controls ID Charts

Single Point of Use - The	ermostatic								
Illustration	Туре	Fluid	Connection Type	Max. Allow. Press.	Body Material	Model	Max. Oper. Press.	Connection Size	Located on Page
	Thermostatic	Water	NPT	150	Brass/Polymer	215	150	1/2"	
Groups of Fixtures - The	rmostatic				,				
Illustration	Туре	Fluid	Connection Type	Max. Allow. Press.	Body Material	Model	Max. Oper. Press.	Connection Size	
	Thermostatic	Water	NPT	150	Chromed	320	150	3/4"	531
					Brass	425	150	1"	
Emergency Fixture Cont	rol - Thermostatic								
Illustration	Туре	Fluid	Connection Type	Max. Allow. Press.	Body Material	Model	Max. Oper. Press.	Connection Size	
	Thermostatic	Thermostatic Water	NPT	150	Chromed	Z358-20	150	3/4"	
\bigcirc			Brass	Z358-40	150	1"			

Water Temperature Controls ID Charts



Recirculation Systems Illustration	Туре	Fluid	Connection Type	Max. Allow. Press.	Flow @ 10 PSI	Body Material	Model	Max. Oper. Press.	Connection Size	Located on Page						
							DRV40									
							DRV40BS		1/2"							
					70		DRV40R									
							DRV40RBS									
						-	DRV50									
	.		NPT		400	Stainless Steel	DRV50BS		01	530						
					133		DRV50R		2"							
							DRV50RBS			_						
							DRV80									
							DRV80BS									
				133		DRV80R		3"								
	Digital	Water		150 PSI			DRV80RBS	150 PSI								
			Union	Union	Union	Union					70		DMC40		1-1/2"	
									-	DMC40BS		1-1/2				
										140		DMC40-40		2-1/2"		
						_	140	-	DMC40-40BS		2-1/2					
					133		DMC50		2"							
						Stainless Steel with	DMC50BS									
					133	Copper Piping	DMC80		3"	531						
			Flange			-	DMC80BS	_		-						
			Ĭ		266		DMC80-80		4"							
						-	DMC80-80BS	_	4							
					399		DMC80-80-80		5"							
							DMC80-80-80BS									

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit www.armstronginternational.com for up-to-date information.

529

530

Water Temperature Controls

Armstrong offers both a complete system and a modular component solution to mixed water temperature control across the entire Institutional Hot Water distribution network.

From mechanical room based digital recirculation system control with integral BAS interface to traditional thermostatic control at distribution points within the system to revolutionary digital point of use control solutions, Armstrong products place user safety and legionella risk reduction at the forefront of hot water system design, operation and maintenance.

Armstrong offers a full range of Thermostatic & Digital Water Temperature Control Solutions which are defined within the following classifications.

Water Temperature Control-Single Point of Use-Thermostatic

Features the 215 thermostatic mixing valve which is designed specifically for installation at or near the final point of use.

Water Temperature Control-Groups of Fixtures-Thermostatic

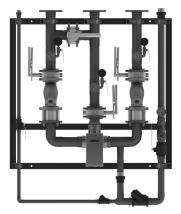
Features 320 and 425 Thermostatic Mixing Valves designed specifically for use in non-return "dead leg" applications.

Water Temperature Control-Recirculation Systems-Digital

Features The Brain[®] Digital Recirculating Valve (DRV) and a series of derivative Digital Mixing Centers (DMC) specifically designed for use in a pumped recirculating hot water system.

Water Temperature Control-Emergency Fixtures-Thermostatic

Features Z358 series of Thermostatic Mixing Valves designed to deliver mixed water temperature control to Emergency Fixtures for fixtures and systems designed comply with the guidelines tendered within ANSI standard Z358.1-2009.


Armstrong®

215

320

425

Digital Mixing Center

Z358 for Emergency Fixtures

Digital-Flo® Steam/Water Shell & Tube Instantaneous Armstrong[®] Water Heater ID Chart

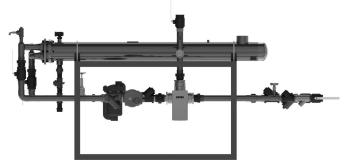
Digital Shell & Tube				1			
-			Water Side		Steam Side		
Model		s @ 7.5 ft/sec m/s)	Flow @ 7.5 ft/sec (2.3 m/s)	Conn	ections	Capacity @ 15 psi (1 bar)	
	Hot/Cold	Recirc.	Capacity @ 90°F (50°C) Delta T Typical @120°F (49°C) Setpoint	Steam Inlet	Condensate Outlet	·······	
DF41540	1"	1"	18 GPM	2 NPT	3/4 NPT	858 lb/hr (389 kg/hr)	
DF41540BS	1"	1"	18 GPM	2 NPT	3/4 NPT	858 lb/hr (389 kg/hr)	
DF415P40	1-1/2"	1"	36 GPM	2 NPT	3/4 NPT	1,716 lb/hr (778 kg/hr)	
DF415P40BS	1-1/2"	1"	36 GPM	2 NPT	3/4 NPT	1,716 lb/hr (778 kg/hr)	
DF415DW40	1"	1"	18 GPM	2 NPT	3/4 NPT	858 lb/hr (389 kg/hr)	
DF415DW40BS	1"	1"	18 GPM	2 NPT	3/4 NPT	858 lb/hr (389 kg/hr)	
DF415DWP40	1-1/2"	1"	36 GPM	2 NPT	3/4 NPT	1,716 lb/hr (778 kg/hr)	
DF415DWP40BS	1-1/2"	1"	36 GPM	2 NPT	3/4 NPT	1,716 lb/hr (778 kg/hr)	
DF53540	1-1/2"	1"	41 GPM	2-1/2 NPT	1 NPT	1,954 lb/hr (886 kg/hr)	
DF53540BS	1-1/2"	1"	41 GPM	2-1/2 NPT	1 NPT	1,954 lb/hr (886 kg/hr)	
DF535P50	2"	1-1/2"	73 GPM	2-1/2 NPT	1 NPT	3,479 lb/hr (1,578 kg/hr)	
DF535P50BS	2"	1-1/2"	73 GPM	2-1/2 NPT	1 NPT	3,479 lb/hr (1,578 kg/hr)	
DF535DW40	1-1/2"	1"	41 GPM	2-1/2 NPT	1 NPT	1,954 lb/hr (886 kg/hr)	
DF535DW40BS	1-1/2"	1"	41 GPM	2-1/2 NPT	1 NPT	1,954 lb/hr (886 kg/hr)	
DF535DWP50	2"	1-1/2"	73 GPM	2-1/2 NPT	1 NPT	3,479 lb/hr (1,578 kg/hr)	
DF535DWP50BS	2"	1-1/2"	73 GPM	2-1/2 NPT	1 NPT	3,479 lb/hr (1,578 kg/hr)	
DF66550	2"	1-1/2"	73 GPM	3 NPT	1-1/4 NPT	3,479 lb/hr (1,578 kg/hr)	
DF66550BS	2"	1-1/2"	73 GPM	3 NPT	1-1/4 NPT	3,479 lb/hr (1,578 kg/hr)	
DF665P80	3"	2"	165 GPM	3 NPT	1-1/4 NPT	7,720 lb/hr (3,502 kg/hr)	
DF665P80BS	3"	2"	165 GPM	3 NPT	1-1/4 NPT	7,720 lb/hr (3,502 kg/hr)	
DF665DW50	2"	1-1/2"	73 GPM	3 NPT	1-1/4 NPT	3,479 lb/hr (1,578 kg/hr)	
DF665DW50BS	2"	1-1/2"	73 GPM	3 NPT	1-1/4 NPT	3,479 lb/hr (1,578 kg/hr)	
DF665DWP80	3"	2"	165 GPM	3 NPT	1-1/4 NPT	7,720 lb/hr (3,502 kg/hr)	
DF665DWP80BS	3"	2"	165 GPM	3 NPT	1-1/4 NPT	7,720 lb/hr (3,502 kg/hr)	
DF812080	3"	2"	165 GPM	4 FLG	2 NPT	7,863 lb/hr (3,567 kg/hr)	
DF812080BS	3"	2"	165 GPM	4 FLG	2 NPT	7,863 lb/hr (3,567 kg/hr)	
DF8120P80	3"	2"	165 GPM	4 FLG	2 NPT	7,863 lb/hr (3,567 kg/hr)	
DF8120P80BS	3"	2"	165 GPM	4 FLG	2 NPT	7,863 lb/hr (3,567 kg/hr)	
DF8120DW80	3"	2"	165 GPM	4 FLG	2 NPT	7,863 lb/hr (3,567 kg/hr)	
DF8120DW80BS	3"	2"	165 GPM	4 FLG	2 NPT	7,863 lb/hr (3,567 kg/hr)	
DF8120DWP80	3"	2"	165 GPM	4 FLG	2 NPT	7,863 lb/hr (3,567 kg/hr)	
DF8120DWP80BS	3"	2"	165 GPM	4 FLG	2 NPT	7,863 lb/hr (3,567 kg/hr)	

532

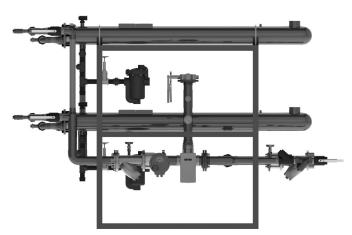
Digital-Flo[®] Steam/Water Shell & Tube Instantaneous Water Heater

Armstrong blends revolutionary digital water temperature control technology with instantaneous heat exchanger design to deliver Digital-Flo[®], an industry changing series Shell & Tube Steam/ Water Heaters.

Digital-Flo uses digital technology featuring The Brain[®] Digital Recirculating Valve (DRV) to offer a level of hot water system temperature control accuracy previously considered unattainable.


Digital-Flo[®] is compatible with Building Automation Systems on the BACnet[™], LonWorks[™], Modbus protocols and can be remotely programmed from and performance data is accessible by a Web browser.

Armstrong Digital Technology


- Powered by low voltage electronics
- Quick response times eliminate the need for pneumatic control valves
- Programmable high/low temperature alert function
- Programmable hot water system safety shutdown
- Self Diagnostic Display Messaging
- Integral Building Automation System (BAS) Modbus Interface
- Serial Connection Point for BAS Interface (BACnet, LonWorks, Web)
- Simplified system commissioning

Armstrong Heat Exchange Technology

- Constant steam pressure prevents stall no pump trap
- Low surface temperature option for hard water applications
- Instantaneous No Storage
- Water raised above Legionella survival temperature

Digital-Flo[®] Steam/Water - Shell & Tube

Digital-Flo® Steam/Water - Shell & Tube

Digital-Flo[®] Boiler Water/Water Plate & Frame Instantaneous Water Heater ID Chart

Boiler Water Greater Tl	han 160°F Models						
		[Boiler Side (Primary)				
Model	Capacity	Conne	ections			Capacity	Connections
	40°F to 140°F Flow (GPM)	Cold/Hot In/Out	Recirc. Return	DRV Size (NPT)	BrainScan	180°F to 150°F Flow (GPM)	Cold/Hot In/Out
DF15W40	15	1" NPT	1" NPT	1-1/2" NPT	No	51	1-1/4" NPT
DF15W40BS	15	1" NPT	1" NPT	1-1/2" NPT	Yes	51	1-1/4" NPT
DF35W40	35	1-1/2" NPT	1" NPT	1-1/2" NPT	No	119	2" NPT
DF35W40BS	35	1-1/2" NPT	1" NPT	1-1/2" NPT	Yes	119	2" NPT
DF65W50	65	2" NPT	1-1/2" NPT	3" NPT	No	221	2" NPT
DF65W50BS	65	2" NPT	1-1/2" NPT	3" NPT	Yes	221	2" NPT
DF90W80	90	3" FLG	2" NPT	3" NPT	No	306	4" FLG
DF90W80BS	90	3" FLG	2" NPT	3" NPT	Yes	306	4" FLG
DF120W80	120	3" FLG	2" NPT	3" NPT	No	407	4" FLG
DF120W80BS	120	3" FLG	2" NPT	3" NPT	Yes	407	4" FLG
DF15WDW40	15	1" NPT	1" NPT	1-1/2" NPT	No	51	1-1/4" NPT
DF15WDW40BS	15	1" NPT	1" NPT	1-1/2" NPT	Yes	51	1-1/4" NPT
DF35WDW40	35	1-1/2" NPT	1" NPT	1-1/2" NPT	No	119	2" NPT
DF35WDW40BS	35	1-1/2" NPT	1" NPT	1-1/2" NPT	Yes	119	2" NPT
DF65WDW50	65	2" NPT	1-1/2" NPT	3" NPT	No	221	2" NPT
DF65WDW50BS	65	2" NPT	1-1/2" NPT	3" NPT	Yes	221	2" NPT
DF90WDW80	90	3" FLG	2" NPT	3" NPT	No	306	4" FLG
DF90WDW80BS	90	3" FLG	2" NPT	3" NPT	Yes	306	4" FLG
DF120WDW80	120	3" FLG	2" NPT	3" NPT	No	407	4" FLG
DF120WDW80BS	120	3" FLG	2" NPT	3" NPT	Yes	407	4" FLG

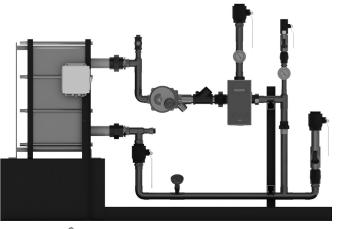
Boiler Water Less Than 160°F Models

Boller water Less Than		[Oomestic Side (Secondary		Boiler Side	e (Primary)	
Model	Capacity	Conne	ctions			Capacity	Connections
Wouer	40°F to 140°F Flow (GPM)	Cold/Hot In/Out	Recirc. Return	DRV Size (NPT)	BrainScan	Capacity 150°F to 115°F Flow (GPM) 44 44 101 101 188 260 260 347 347 44 101 188 188 188 188 180 260 347 44 101 101 188 188 188 260	Cold/Hot In/Out
DF15WE40	15	1" NPT	1" NPT	1-1/2" NPT	No	44	1-1/4" NPT
DF15WE40BS	15	1" NPT	1" NPT	1-1/2" NPT	Yes	44	1-1/4" NPT
DF35WE40	35	1-1/2" NPT	1" NPT	1-1/2" NPT	No	101	2" NPT
DF35WE40BS	35	1-1/2" NPT	1" NPT	1-1/2" NPT	Yes	101	2" NPT
DF65WE50	65	2" NPT	1-1/2" NPT	3" NPT	No	188	2-1/2" FLG
DF65WE50BS	65	2" NPT	1-1/2" NPT	3" NPT	Yes	188	2-1/2" FLG
DF90WE80	90	3" FLG	2" NPT	3" NPT	No	260	3" FLG
DF90WE80BS	90	3" FLG	2" NPT	3" NPT	Yes	260	3" FLG
DF120WE80	120	3" FLG	2" NPT	3" NPT	No	347	4" FLG
DF120WE80BS	120	3" FLG	2" NPT	3" NPT	Yes	347	4" FLG
DF15WEDW40	15	1" NPT	1" NPT	1-1/2" NPT	No	44	2" NPT
DF15WEDW40BS	15	1" NPT	1" NPT	1-1/2" NPT	Yes	44	2" NPT
DF35WEDW40	35	1-1/2" NPT	1" NPT	1-1/2" NPT	No	101	2" NPT
DF35WEDW40BS	35	1-1/2" NPT	1" NPT	1-1/2" NPT	Yes	101	2" NPT
DF65WEDW50	65	2" NPT	1-1/2" NPT	3" NPT	No	188	4" FLG
DF65WEDW50BS	65	2" NPT	1-1/2" NPT	3" NPT	Yes	188	4" FLG
DF90WEDW80	90	3" FLG	2" NPT	3" NPT	No	260	4" FLG
DF90WEDW80BS	90	3" FLG	2" NPT	3" NPT	Yes	260	4" FLG
DF120WEDW80	120	3" FLG	2" NPT	3" NPT	No	347	4" FLG
DF120WEDW80BS	120	3" FLG	2" NPT	3" NPT	Yes	347	4" FLG

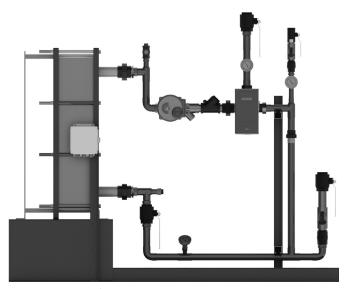
Digital-Flo[®] Boiler Water/Water Plate & Frame Instantaneous Water Heater

Armstrong blends revolutionary digital water temperature control technology with instantaneous Plate & Frame instantaneous heat exchanger design to deliver Digital-Flo[®], an industry changing series Boiler Water to Water Heaters.

Digital-Flo[®] uses digital technology featuring The Brain[®] Digital Recirculating Valve (DRV) to offer a level of hot water system temperature control accuracy previously considered unattainable.


Digital-Flo[®] is compatible with Building Automation Systems on the BACnet[™], LonWorks[™], Modbus protocols and can be remotely programmed from and performance data is accessible by a Web browser.

Armstrong Digital Technology


- · Powered by low voltage electronics
- Quick response times eliminate the need for primary side controls
- Programmable high/low temperature alert function
- Programmable hot water system safety shutdown
- Self Diagnostic Display Messaging
- Integral Building Automation System (BAS) Modbus Interface
- Serial Connection Point for BAS Interface (BACnet, LonWorks, Web)
- Simplified system commissioning

Armstrong Heat Exchange Technology

- Lead Free
- Instantaneous No Storage
- · Small footprint Compact assembly
- Simplified onsite piping five connections
- Single wall and double wall 316L stainless steel plates
- Plate and frame PHE design with Nitrile gasket* design facilitates field service

Digital-Flo[®] Boiler Water/Water - Single Wall Plate & Frame Heat Exchanger

Digital-Flo[®] Boiler Water/Water - Double Wall Plate & Frame Heat Exchanger

*FDA approved

Armstrong

Armstrong[®] Flo-Rite-Temp[®] Instantaneous Steam/Water Heater

Flo-Rite-Temp™										
Illustration	Туре	Fluid	Connection Type	Max. Allow. Press.	TMA °F	Body Material	Model	Max. Oper. Press.	Connection Size	Located on Page
	Flo-Rite-Temp Steam to Water Instantaneous							125	1-1/2" Water	
	Water Heater (Single-Walled		NPT			Bronze (Valve)	535	15	2-1/2" Steam	
	Exchanger)	Steam and	NPT	150 psi (Steam)	300			125	2" Water	
		Water		225 psi (Water)	500	Carbon Steel Shell	665	15	3" Steam	
			NPT (Water)			with Admiralty Brass Tube Bundle (Heat Exchanger)	8120	125	3" Water	
			ANSI 150 (Steam)				0.20	15	4" Steam	
	Flo-Rite-Temp Steam to Water Instantaneous		NPT			Dropzo		125	1-1/2" Water	
	Water Heater (Double-Walled Exchanger)					Bronze (Valve)	535DW	15	2-1/2" Steam	
	Exchanger)	Steam and	NPT	150 psi (Steam)	300		665DW	125	2" Water	
		Water		225 psi (Water)		Carbon Steel Shell with Copper Tube		15	3" Steam	
			NPT (Water)			Bundle (Heat Exchanger)	8120DW	125	3" Water	507
	51 DV 7		ANSI 150 (Steam)					15	4" Steam	537
	Flo-Rite-Temp Steam to Water Instantaneous Water Heater (Single-Walled, All Stainless Steel Wetted Parts) Steam Water						125	2" Water		
			NPT	150 psi (Steam)	300	316 Stainless Steel (Valve) Carbon Steel Shell with 316L Stainless Steel Tube Bundle (Heat Exchanger)	665 SS	15	3" Steam	
			NPT (Water) ANSI 150 (Steam)	225 psi (Water)			8120 SS	125	2" Water	
							0120 33	15	4" Steam	-
	Flo-Rite-Temp with The Brain and BrainScan						525	125	1-1/2" Water	
			NPT			Bronze (Valve) Carbon Steel Shell with Admirality Brass Tube Bundle (Heat Exchanger)	535	15	2-1/2" Steam	
		Steam and		150 psi (Steam)	300		665	125	2" Water	
		Water		225 psi (Water)	000			15	3" Steam	-
			NPT (Water) ANSI 150				8120	125	3" Water	
			(Steam)					15	4" Steam	

536

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Flo-Rite-Temp[®] "Feed Forward" Steam/Water Instantaneous Water Heaters and pre-piped packaged solutions offer multiple size/flow options for both non-recirculating and recirculating hot water systems.

Available in both a single wall and double wall design, the Flo-Rite-Temp[®] Instantaneous Steam/Water Heater has a unique feed forward design which features a differential pressure diaphragm actuated mixing unit integral to a shell and tube heat exchanger.

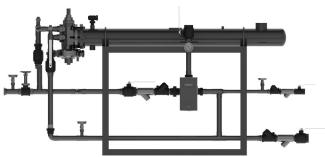
The Flo-Rite-Temp[®] mixing unit manages the water flow through the heat exchanger based upon downstream hot water demand and eliminates the requirement for a modulating steam control valve.

Operating on constant low pressure (2-15PSI) steam, the Flo-Rite-Temp mixing unit supplies water to the heat exchanger where it is overheated and then returned to the mixing unit for proportional re-mixing with cold water to a pre-set outlet temperature.

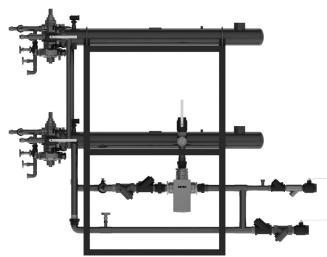
Speed of Response – a differential pressure diaphragm within the mixing unit rapidly responds to a change in system demand and significantly reduces the lag times typically associated with feedback/modulating steam control valve systems.

Failure Safe - Flo-Rite-Temp[®] mixing valve has a diaphragm actuated design which can be described as "failure safe". In the event of a diaphragm failure the mixing unit will fail with a cold bias and will not allow hot water to exit the heat exchanger.

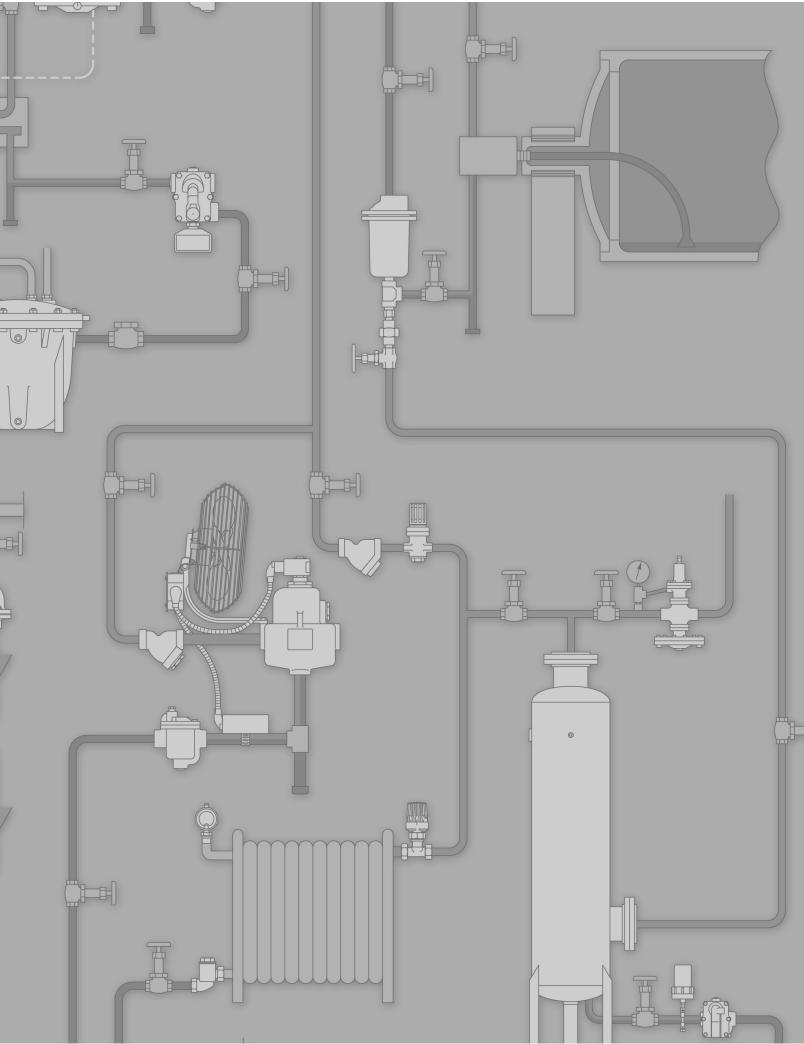
Temperature Control and User Safety - capable of controlling outlet temperatures +/-4°F, this principal of operation offers the additional relevant benefit of reducing the waterborne bacterial content of the water during the overheating process. In addition, with no water storage requirement, Flo-Rite-Temp[®] water heaters are a sensible selection as a component of a broader system design initiative for Legionella risk reduction.

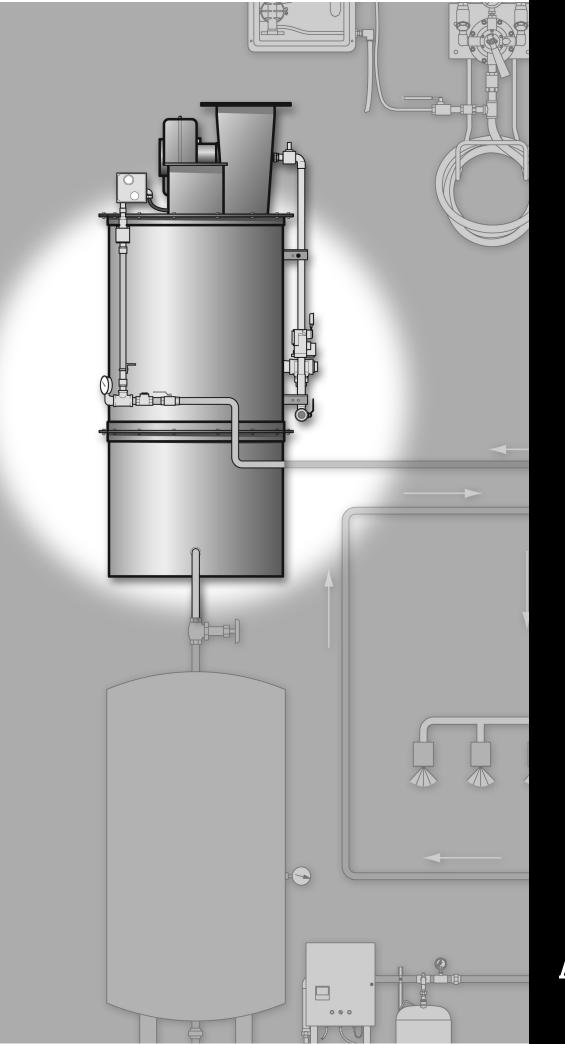

Ease of Maintenance - accessible "non helical" admiralty brass straight tubes inside the carbon steel shell available mechanical cleaning and visual inspection. Non modulating constant steam pressure ensures condensate drainage and removes the potential for water hammer damage and corrosion. There is no steam control valve to maintain and typically no supplemental condensate return equipment required.

Ease of Installation - no storage tank, small footprint, access via a standard doorway and pre-piped packaged solutions reduce installation time, space and expenditure.


For additional information, please visit our website at **armstrong**international.com or contact your local Armstrong representative.

Flo-Rite-Temp Instantaneous Water Heater


Flo-Rite-Temp Instantaneous Water Heater Pre-Piped Packaged Solution with The Brain[®] Digital Recirculating Valve



Flo-Rite-Temp Instantaneous Water Heater Pre-Piped Packaged Solution - Double Wall -Parallel/Redundant Heat Exchangers with The Brain[®] Recirculating Valve

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit www.armstronginternational.com for up-to-date information.

537

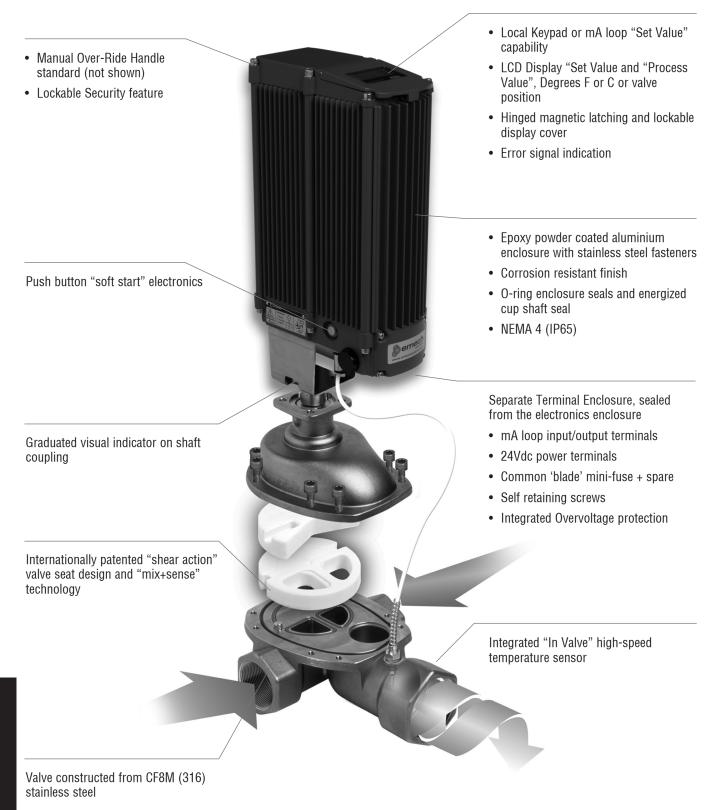
Industrial Hot Water

Armstrong

Armstrong[®] Emech[™] Digital Control Valves ID Chart

Emech® Digital Contr	ol Valves						
Illustration	Туре	Connections NPT	Body Material	Model	Flow Rate gpm @ 45 psi	Max. Inlet Press. psig	Located on Page
Emech® Hot/Cold Wat	er Mixing Valves						
		3/4"		E20W	54	150	
		1"		E25W	84	150	
v i°ent	Actuated	1-1/2"	Stainless Steel	E40W	132	150	
		2"]	E50W	320	150	
TOP I		3"]	E80WR	966	230	
		3/4"		F3020	54	150	
	Non	1"	Stainless Steel	F3025	84	150	
	Actuated	1-1/2"		F3040	132	150	
<u>A</u> LA		2"		F3050	320	150	
Emech® Steam/Water	Mixing Valves						
		1"		E25S	N/A	230	
i i ent	Actuated	1-1/2"	Stainless Steel	E40S	N/A	230	542
		2"		E50S	N/A	230	
Emech® Digital Flow	Control Systems						
		3/4"		E20F	109	150	
	Actuated	1"		E25F	187	150	
i i i i i i i i i i i i i i i i i i i	Actualeu	1-1/2"	Stainless Steel	E40F	308	150	
		2"		E50F	535	150	
		3/4"		F2020	109	150	1
	Non	1"		F2025	187	150	_
	Actuated	1-1/2"	Stainless Steel	F2040	308	150	
HENGH		2"	1	F2050	555	150	1

540



Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit www.armstronginternational.com for up-to-date information.

Industrial Hot Water

Armstrong[®] Emech[™] Digital Control Valves

542

Emech[™] Digital Control Valves

Emech[™] is digital hardware that is faster, simpler, and smarter with one goal in mind: unparalleled performance in industrial applications. Emech[™] digital control valves are available for steam/water and hot/cold water industrial service. The unique range of Emech[™] multi-patented ceramic disc/ stainless steel disc rotary 3 port mixing when combined with the Emech[™] digital actuator delivers superior closed-loop performance in terms of speed, precision and reduced mechanical wear when compared to traditional mixing and control valve systems.

The mixing valve system is a highly optimized temperature control system with patented valve disc system, swirl mixing action, high speed in valve sensing, with embedded PID control of a 100% duty cycle rated stepper motor digital actuator.

A series of 2 port flow control valves are also available, which when combined with the Emech[™] actuator and sensing technology forms a system providing superior temperature control to a range of industry standard processes, through its high speed and software configurable control dynamics.

Actuator Features

- Electric Stepper Motor Control
- 100% Duty Cycle rated for continuous control
- Planetary lifetime lubricated, low backlash gearbox
- High speed 1.3 second quarter-turn response
- Precise positioning achieving 0.03° valve seat placement
- Software configurable PID control for individual application loop tuning and special modes via RS232
- Two operating modes: Stand alone control via onboard keypad or Remote control via external 4-20mA
- 4-20mA input and output ports
- · Additional auxiliary switch control available
- · Epoxy powder-coated aluminum NEMA 4 enclosure
- Two sizes:

G12 model 310 in.lb torque: 24vDC 3.5 Amp G13 model 885 in.lb torque: 24vDC 5 Amp

Valve Features:

- One piece rotary spindle design
- Top entry maintenance and simple seals/o-rings
- Pressure rated to 145psi, designed to ASME B16.34
- · Mechanical valve mounting to ISO5211,5210

Primary Markets Include:

- Food Manufacturing Industries
- Pharmaceutical Manufacturing Industries
- · General Process Industries

High Speed Accuracy, Increase in Productivity

Decrease production downtime, improve product consistency and boost revenue.

Emech[™] Digital Control Valves are specifically designed to instantly respond accurately. Emech's response time is incredibly rapid which directly affects productivity. The technology of Emech[™] simply achieves more in less time, increasing productivity while lowering utility and maintenance cost. Emech's superior valve performance allows manufacturers to run their plans closer to constraints, thereby increasing production and yield.

Maintenance Friendly

Featuring a CF8M/316 stainless steel valve body along with ceramic or nickel chrome stainless steel action discs and "simple" valve seals design kits, the Emech™ system is built to resist corrosion and minimalize wear while providing maximum performance.

Emech[™] is manufactured to meet the highest possible standards, every Emech[™] system is designed, built and tested to provide reliable service with minimal maintenance.

Armstrong.

Digital-Flo® HT Steam/Water Instantaneous Water Heater ID Chart

Digital-Flo HT Shell and Tube							
		GPM/M3hr @	Steam Inlet	Water Inlet	Wetted Parts		
Model	Part Number	Part Number 15PSI Steam		Connection Size	Material	Emech size	
		100 Delta T	in	in			
DF535HT	D55743	32/8	2-1/2	1-1/2	Stainless Steel	E25W	
DF665HT	D55744	65/15	3	2	Stainless Steel	E40W	
DF8120HT	D55745	120/27	4	3	Stainless Steel	E50W	
DF535PHT	D55746	70/16	2-1/2	2	Stainless Steel	E50W	
DF665PHT	DF55747	130/30	3	3	Stainless Steel	E50W	
DF8120PHT	DF55748	240/54	4	4	Stainless Steel	E80W	

Digital-Flo HT Plate and Frame

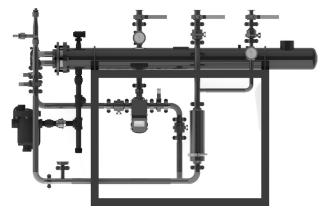
		GPM/M3hr @	Steam Inlet	Water Inlet	Wetted Parts		
Model	Part Number	15PSI Steam	Connection Size	Connection Size	Material	Emech size	
		100 Delta T	in	in			
DF5HT	D42788	22/5	1-1/2	1-1/2	Stainless Steel	E25W	
DF10HT	D42789	44/10	2	1-1/2	Stainless Steel	E40W	
DF20HT	D42790	88/20	3	2-1/2	Stainless Steel	E50W	
DF40HT	D42791	176/40	4	3	Stainless Steel	E80W	
DF75HT	D42792	330/75	6	3	Stainless Steel	E80W	
DF100HT	D42793	440/100	6	6	Stainless Steel	E100W	

544

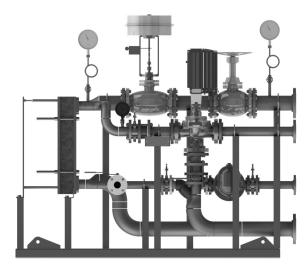
Digital-Flo[®] HT Steam/Water Instantaneous Water Heater

Armstrong blends new age digital water temperature control technology with instantaneous heat exchanger design to deliver Digital-Flo[®] HT (High Temperature) - a revolutionary series of standard and application customized Shell and Tube and Plate and Frame Instantaneous Steam/Water Heaters.

Every Digital-Flo[®] HT model features Armstrong's multipatented Emech[™] ceramic disc rotary 3 port mixing unit and digital actuator. Emech delivers superior performance in terms of speed, precision and reduced mechanical wear when compared to traditional mixing and control valve systems.


Designed to meet higher set point temperature process applications such as closed loop vessel jacket heating and centralized plant sanitization, Digital-Flo[®] delivers an unmatched level of water temperature control accuracy, component & operational simplicity plus onboard system connectivity.

When the temperature of the loop or directly to the process needs to be right every time – Digital-Flo $^{\circ}$.


When precision temperature control accuracy is not a key requirement but going digital by removing the traditional feedbck steam control valve will enhance operational efficiency and reduce maintenance – Digital-Flo[®].

When visibility on plant BAS or DDC is required - Digital-Flo®.

Digital-Flo HT is available in 6 standard size configurations in either a Shell & Tube or Plate & Frame design and each can be customized to suit specific site requirements.

Digital-Flo HT - Shell & Tube

Digital-Flo Plate & Frame HT

Flo-Direct® Complete Thermal Exchange Gas Fired Armstrong[®] Water Heater

Flo-Direct				
	Conn	ections		
Model	1	2	btu/hr	kW/hr
	in	in		
1000	1	1	1,000,000	292
1500	1	1	1,500,000	439
2000	1-1/2	1-1/2	2,000,000	585
3000	2	1-1/2	3,000,000	878
5000	2-1/2	2	5,000,000	1464
6000	3	2	6,000,000	1757
7000	3	2	7,000,000	250
9000	3	2	9,000,000	2635
10000	3	2	10,000,000	2928
12000	4	3	12,000,000	3514
15000	4	3	15,000,000	4392
16000	4	3	16,000,000	4685

546

Flo-Direct[®] Complete Thermal Exchange Gas Fired Water Heater

CTE Technology

Developed from direct contact water heating science which was first introduced more than two decades ago, Complete Thermal Exchange (CTE) technology has revolutionized high efficiency water heating methods. Today CTE enjoys a proven record and has rapidly become the new standard in high efficiency water heating and energy savings.

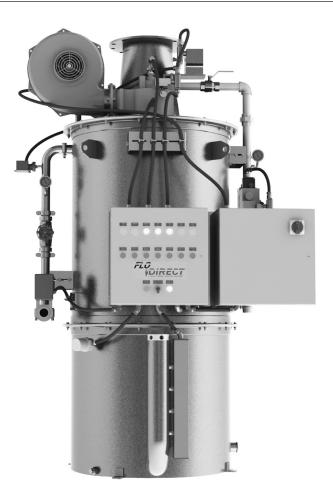
While traditional direct contact water heating can offer significant energy savings when compared to a conventional steam boiler system, the Armstrong Flo-Direct[®] CTE gas fired water heater offers an unparalled, 99.7% high heat value (110% approx. low heat value) efficiency rating* throughout each phase of its operation cycle.

The sustained operational efficiency of Flo-Direct[®] CTE gas fired water heaters creates the most energy efficient method of hot water production currently available.

No Scale Build-Up

The Flo-Direct[®] CTE gas fired water heater's unique design prevents scale build-up because there are no "hot spots" internally or externally, and because calcium is prevented from completely falling out of suspension during operation. As a result, the mineral content of the influent water and the effluent water will be equal.

Armstrong Flo-Direct $^{\ensuremath{\mathbb{R}}}$ CTE gas fired water heaters achieve CTE Standards


The Flo-Direct[®] CTE direct contact water heaters, meet five standards not available with the older designs and traditional methods of direct contact water heater technology:

- CTE units maintain a minimum of 99.7% high heat value (110% approx. low heat value) efficiency in all modes of operation, not just under optimal conditions.
- CTE units have multiple thermal passes. Water and the combustion gasses (or heat from the combustion) repeatedly come in contact. This ensures that the maximum amount of heat or energy from combustion is transferred to the water.
- 3. CTE units have a dry combustion chamber. This is vital to maintaining complete combustion at all times during operation.
- 4. CTE units maintain complete combustion at all times.
- CTE units must have an integral water quality integrity system. Operational procedures must be in place to ensure that effluent water quality is equal to the influent water quality.

Complete Combustion = Complete Water Quality

While many traditional-method direct contact water heaters spray water directly on the flame – sometimes called "flame quenching" – Flo-Direct[®], using CTE technology, avoids this process altogether. According to the Industrial Heating Equipment Association's "Combustion Technology Manual," flame quenching promotes incomplete combustion, and produces alcohols, aldehyde, formic acid, higher order acids, carbon monoxide, as well as carbon dioxide and water vapor. With CTE technology, Flo-Direct[®] maintains 99.7% high heat value* (110% approx. low heat value) combustion efficiency, while maintaining water quality at all times.

*See page 530 for high heat value (HHV) and low heat value (LHV) explanation.

Global Water Quality Standards

Flo-Direct[®] Complete Thermal Exchange (CTE) Gas Fired Water Heating Technology significantly limits the effluent water chemical additives typically attributed to other process water heating systems.

Our unique CTE water heating process deaerates the water significantly. Independent third party testing has verified CTE technology can actually remove some chemical constituents from the influent water.

NSF test results show that the effluent water from a Flo-Direct CTE Gas Fired Water Heater meets US, European Union and PRC bottled drinking water standards* and has been tested and documented as fully compliant with:

- USFDA The United States Food and Drug Administration, Code of Federal Regulations Bottled Water Standard: Chapter I, Title 21, Part 165, Subpart B, Section 165.110.
- EU-TRW The European Union Directives(s) Treated Waters: 98/83/EC.
- * Peoples Republic of China Standards for Drinking Water: GB5749-2006
- *Statement presumes influent water also meets listed standards.

Armstrong[®] Hose Stations & Washdown Equipment

STEAMIX [®] Hose St	ations and Mixing I	Units								
Illustration	Туре	Connections NPT	Body Material	Model	Max. Inlet Press. psig	Check Valves	Flow Controls	Hose Rack	Nozzle and Hose	Strainers
	Steam & Water Mixing Unit			2030						
		0.74%	Bronze	2031	150		•			•
YAN .	Steam & Water Hose Station	3/4"	DIGNZC	2032	150		•	•		•
				2033			•	•	•	•
	Steam & Water Mixing Unit			2031P		•	•			•
	Steam & Water	3/4"	Bronze	2032P	150	•	•	•		•
	Hose Station			2033P		•	•	•	•	•
	Steam & Water Mixing Unit			2030SS						
			304	2031SS	- 150	•	•			•
	Steam & Water Hose Station	3/4"	Stainless Steel	2032SS		•	•	•		•
				2033SS		•	•	•	•	•
Hot & Cold Hose S	tations and Mixing	Units			1					
t _o t	Hot & Cold			3031			•			
	Water Mixing Unit			3032			•	•		
	Hot & Cold	0 (4"	Chrome Plated	3033	150		•	•	•	
	Water Hose	3/4"	Brass	3031S	150	•	•			
	Station			3032S		•	•	•		
				3033S		•	•	•	•	
Single Temperatu	re Hose Stations									
	Single Temperature	3/4"	304	1032	150		•	•		
	Hose Stations	5, .	Stainless Steel	1033	150		٠	•	•	

548

Hose Stations & Washdown Equipment

Steam & Water Hose Stations

 $\operatorname{Steamix}^{\scriptscriptstyle \otimes}\operatorname{Hose}$ Stations will not pass live steam in the event of:

- a significant cold water pressure reduction.
- a complete failure of the cold water supply.
- mechanical failure of its primary operating component.

STEAMIX Hose Stations are designed to improve efficiency and reduce risk when mixing STEAM and WATER for washdown. When your process demands high washdown temperatures, adjusting the mix of steam and water becomes much more difficult and dangerous. With the older style, dual globe valve Mixing "Y," it is easy to introduce too much steam — with dangerous consequences for your personnel -Not with STEAMIX!

Available in bronze and Type 304 stainless steel.

Armstrong Hot & Cold Water Hose Stations

Armstrong Hot & Cold Water Hose Stations are supplied with an integral Rada 320 Thermostatic Mixing Valve. Rada 320 offers:

- Full range temperature control from full cold to a field adjustable maximum temperature limit stop (which the user cannot override) in a single handle rotation.
- A single temperature lock out.
- Will hold outlet temperatures +/- 2°F (1°C) in the event of inlet pressure and/or temperature change.
- Thermal shutdown capability to protect the operator in the event of an inlet supply failure.
- Available in bronze or with a heavy duty industrial nickel plate finish.

Armstrong Single Temperature Hose Stations

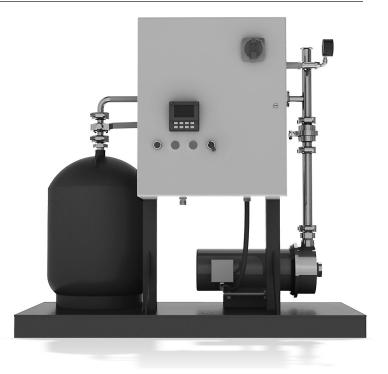
Armstrong Single Temperature Hose Stations are supplied with a heavy duty washdown hose and a self closing industrial quality spray nozzle. They are ideal for installation in hot water systems which do not require a secondary point of use water temperature adjustment.

- Stainless Steel Construction.
- Stainless Steel Ball Valve Flow Control.
- Stainless Steel Hose Rack.
- · Spray Nozzle.
- Washdown Hose.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit www.armstronginternational.com for up-to-date information.

549

VFD Pump Package	D Pump Package													
Illustration	Туре	Fluid	Conn	. Type	Body Material	Model	Water Conn							
Inustration	Type	Fluiu	Inlet	Outlet		WOUEI	Inlet	Outlet						
	VFD		NPT	TNPT	210	VFD-50	1 1/2"	1 1/2"						
	Pump Package Water					VFD-100	2"	2 1/2"						
		Water	ANSI 150#		316 Stainless Steel	VFD-175	2"	3"						
			Flanged	ANSI 150# Flanged	olumicos older	VFD-250	2 1/2"	4"						


550

Packaged Hot Water Distribution Solutions

Variable Frequency Drive Pump Assemblies

The Armstrong Variable Frequency Drive (VFD) Pump Packages team with our Flo-Direct CTE Water Heaters and our optional storage tanks at a central location to maintain flow and pressure levels at variable usage draw-off points within the hot water distribution system.

Standard and custom designed assemblies are application engineered and configured specifically to the needs of the installation site to provide a complete high efficiency low energy consumption hot water solution.

Ancillary Products

Armstrong

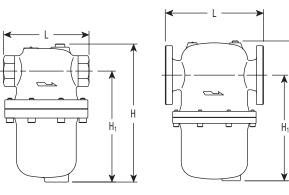
Armstrong[®] DS Series Drain Separators

Condensate in steam and air piping reduce thermal efficiency, cause water hammer, corrode equipment such as valves and pipes, and cause other problems.

Armstrong drain separators separate condensate efficiently by using the centrifugal force of steam or air created by introducing it into a specifically shaped path. Because of the simple structure of the drain separators, pressure loss is minimized, enabling clean, dry steam or air to be fed to equipment.

With correct sizing and proper drainage, the separators are designed to eliminate 98% of all entrained liquids and particles that are 10 microns and larger in size.

Features


- · A cyclone structure maximizes liquid separation efficiency
- Pressure loss is extremely low
- No moving parts means no breakdowns

Operating Principle

When steam or air flow enters the drain separator, centrifugal force is generated in the fluid because of the device's internal structural design. The fluid drains along the wall because of the difference in specific gravity with steam or air, eventually striking the baffle. The baffle guides the fluid to the drain outlet and to the trap, which drains it. As a result, both small dirt particles and condensate are separated and removed from the system through the bottom drain.

For fully certified drawings refer to:

DS-1 / DS-2	CDY1102
DS-3	CD2126
DS-4	CD2127

DS-1 / DS-3 / DS-4

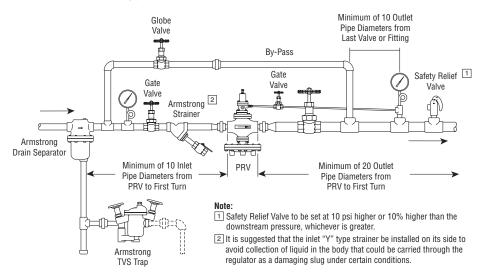
DS-2 / DS-3 / DS-4

DS Seri	es Specificat	ions					
Model	Application	Maximum Pressure psig	Maximum Temp.	Materials			
		(bar)	°F (°C)	Body	Nozzle		
DS-1		NPT 300 (20)		Dustile			
DS-2		150 lb. Flanged 185 (13)	430 (221)	Ductile Iron ASTM A536	Cast Iron ASTM A48		
D3-2	Steam	300 lb. Flanged 300 (20)		/1000			
	Air	NPT 300 (20)	650 (343)		S304		
DS-3 DS-4		150 lb. Flanged 150 (10)	450 (232)	,	IS-3) on Steel		
		300 lb. Flanged 500 (34)	650 (343)		IS-4)		

DS Seri	ies Dim	ension	and We	ights						_									_	
	Siz	20			Face-to-l	Face "L'	3		н		н	1	Dra	in			We	ight		
Model	312	e	NP	Т	150	ŧ	300	#	п						NPT		150#		300#	
	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg
	1/2	15	5-15/16	150	—	—	_	—	9-9/16	243	7-5/8	193	3/4	20	16	7.3	—	_	_	—
	3/4	20	5-15/16	150	—	—	_	—	9-9/16	243	7-5/8	193	3/4	20	16	7.3	—	_	_	—
DS-1	1	25	5-15/16	150	—	—	_	—	9-9/16	243	7-5/8	193	3/4	20	16	7.3	—	_	_	—
D3-1	1-1/4	32	7-1/2	190	_	—	_	_	11-1/8	243	8-3/8	213	1	25	28	12.7	—		_	_
	1-1/2	40	7-1/2	190	_	—	_	_	11-1/8	243	8-3/8	213	1	25	28	12.7	—		_	_
	2	50	8-5/8	219			_		13-15/32	243	10-1/4	260	1	25	45	20.5			_	_
	2-1/2	65	—	—	11-1/2	292	11-15/16	303	16-15/32	418	12-3/8	314	1	25	—	—	45	20.5	77	35
DS-2	3	80	—	—	13-1/2	343	14-1/64	356	19	484	14-1/2	361	1-1/4	32	—	—	77	35	99	45
	4	100	—	_	15-13/16	402	16-7/16	418	23-3/8	594	17-1/2	445	1-1/4	32	—	_	99	45	143	65
	1/2	15	5-1/2	140	9	229	9	229	16	356	9	229	1	25	28	12.7	30	13.6	32	14.5
	3/4	20	5-1/2	140	9	229	9	229	16	356	9	229	1	25	28	12.7	30	13.6	32	14.5
	1	25	6-3/8	162	10-1/2	267	10-1/2	267	16	356	10-1/2	267	1	25	30	13.6	33	15	35	15.9
	1-1/4	32	6-3/8	162	10-1/2	267	10-1/2	267	16	356	10-1/2	267	1	25	32	14.5	35	15.9	37	16.8
50.0	1-1/2	40	7-5/8	194	11-1/2	292	11-1/2	292	19	483	12-1/2	318	1	25	46	20.9	50	22.7	56	25.4
DS-3	2	50	7-7/8	200	11-1/2	292	11-1/2	292	19	483	12-1/2	318	1	25	51	23.1	55	24.9	59	26.8
	2-1/2	65	—	—	16	406	16	406	22	559	15	381	1	25	—		100	45.4	110	49.9
DS-4	3	80	—	—	18	457	18	457	26	660	18	457	1	25	—		140	63.5	150	68
	4	100	—	_	20	508	20	508	31	787	22	559	1-1/2	40			195	88.4	220	99.8
	6	150		—	24	610	24	610	41	1041	30	762	1-1/2	40		-	350	159	380	172
	8	200		—	28	711	28	711	50	1270	37	940	2	50		-	475	215	610	278
	10	250		—	34	864	34	864	70	1778	55	1397	2	50		_	780	354	1180	535
	12	300		_	38	965	38	965	75	1905	58	1473	2-1/2	65			940	426	1510	685

DS Series Drain Separators

Capacities for Steam Service


DS Series Ste	am Capacities (lb/hr)							
Size	5 psig	10 psig	25 psig	50 psig	100 psig	150 psig	200 psig	250 psig	300 psig
1/2"	34	43	69	113	200	287	374	461	548
3/4"	60	75	121	198	351	503	656	809	962
1"	98	122	197	320	568	816	1,063	1,311	1,559
1-1/4"	169	212	340	555	983	1,412	1,840	2,269	2,698
1-1/2"	230	288	463	755	1,338	1,922	2,505	3,088	3,672
2"	379	475	763	1,244	2,206	3,167	4,129	5,090	6,052
2-1/2"	541	678	1,089	1,775	3,147	4,519	5,891	7,263	8,635
3"	835	1,046	1,682	2,741	4,860	6,978	9,096	11,215	13,333
4"	1,437	1,802	2,896	4,720	8,368	12,016	15,664	19,312	22,960
6"	3,262	4,090	6,573	10,712	18,991	27,269	35,548	43,826	52,105
8"	5,648	7,082	11,382	18,550	32,885	47,220	61,556	75,891	90,226
10"	8,903	11,162	17,941	29,239	51,835	74,430	97,026	119,622	142,218
12"	12,769	16,010	25,732	41,936	74,344	106,752	139,160	171,568	203,977

DS Series Ste	am Capacities (I	kg/hr)							
Size	0.34 bar	0.69 bar	1.7 bar	3.4 bar	6.9 bar	10.3 bar	13.8 bar	17.2 bar	20.7 bar
1/2"	16	20	31	51	91	130	170	209	249
3/4"	27	34	55	90	159	228	298	367	436
1"	44	55	89	145	258	370	482	595	707
1-1/4"	77	96	154	252	446	640	835	1,029	1,224
1-1/2"	104	131	210	342	607	872	1,136	1,401	1,665
2"	172	215	346	564	1,001	1,437	1,873	2,309	2,745
2-1/2"	245	307	494	805	1,428	2,050	2,672	3,294	3,917
3"	379	475	763	1,243	2,204	3,165	4,126	5,087	6,048
4"	652	817	1,314	2,141	3,796	5,450	7,105	8,760	10,414
6"	1,480	1,855	2,982	4,859	8,614	12,369	16,124	19,880	23,635
8"	2,562	3,212	5,163	8,414	14,917	21,419	27,921	34,424	40,926
10"	4,038	5,063	8,138	13,263	23,512	33,761	44,011	54,260	64,509
12"	5,792	7,262	11,672	19,022	33,722	48,423	63,123	77,823	92,523

Piping/Installation

Always mount the drain separator in a horizontal pipe, with the drain discharge port facing downward. Be sure to install a trap device below the drain discharge port. The top of the trap should be lower than the separator's drain discharge port.

Typical Installation for Steam Application

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Ancillary Products

Armstrong[®] Stainless Steel Sump Ejector

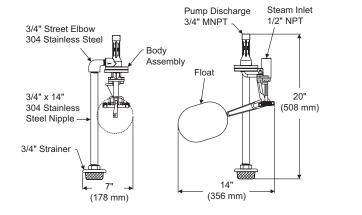
Armstrong Condensate Management Group offers a stainless steel sump ejector for use in draining unwanted water from steam pits, steam tunnels or enclosed spaces. The stainless steel sump ejector uses a snap-acting Inconel X-750 spring-assisted mechanism, which engages a steam motive valve, turning the pump on or off as the float rises and falls. The all stainless steel design will ensure long life in the rather harsh environment of a steam pit.

The stainless steel sump ejector is designed to eliminate maintenance headaches and safety issues surrounding steam pits, tunnels and enclosed spaces.

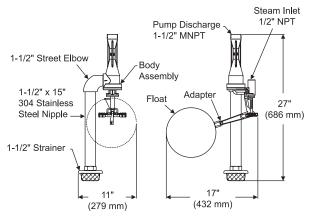
Features

- All stainless steel construction and design guard against corrosion
- True steam-on, steam-off operation
- Heavy duty Inconel X-750 springs provide a long, troublefree service life
- The small, compact and unique cast stainless steel design is unlike anything on the market today

For a fully detailed certified drawing, refer to list below. 3/4" CDF #1052


1-1/2" CDF #1065

Stainless Steel Sump Ejector N	laterials
Name of Part	Material
Mechanism	ASTM A351 CF8M
Springs	Inconel X-750
Spring Ends	304 Stainless Steel
Clevis Pins	304 Stainless Steel
Body	ASTM A351 CF8M
Nozzle	308 Stainless Steel
Seal Retainer	308 Stainless Steel
Motive Ball	440-C Stainless Steel
Motive Valve	316 Stainless Steel
Rod Seal	PTFE
Seal Spring	Hastelloy C-276
Rod Wiper	Nitrile
O-Ring	EPDM
Bolts	18-8 Stainless Steel
Strainer Body	Glass Filled Nylon
Strainer Mesh	Stainless Steel
Fittings	304 Stainless Steel
Pipe	304 Stainless Steel

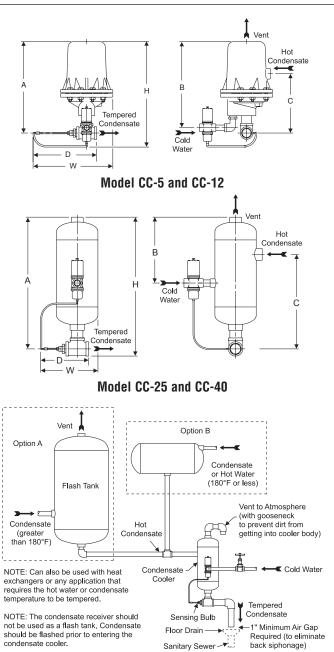


Stainless Steel Sump Ejector

3/4" Model

1-1/2" Model

3/4" Stainle	ss Steel	Sump E	jector Ca	pacities	in gallo	ns per m	inute (g	pm)		·			·				
Discharge	Water Temperature 60°F					Wate	er Tempo	erature 1	00°F			Water Te	emperatı	ire 140°	F		
Discharge Head (ft)		Motive	Steam	Pressure	(psig)			Motive	steam	Pressure	e (psig)		М	otive Ste	am Pres	sure (ps	ig)
neau (n)	40	60	80	100	120	150	40	60	80	100	120	150	60	80	100	120	150
0	6.0	9.3	11.6	12.2	12.8	12.9	6.0	9.0	9.2	8.6	8.0	8.0	5.5	5.3	5.4	5.5	5.5
5	4.0	7.3	9.9	11.1	11.9	12.4	3.0	7.1	8.2	8.1	7.8	7.8	4.5	4.5	5.3	5.4	5.4
10	2.0	5.2	8.3	10.0	11.0	11.9	—	5.2	7.2	7.7	7.6	7.6	3.5	3.5	5.2	5.2	5.2
15		3.2	6.6	8.9	10.0	11.5	—	3.3	6.2	7.2	7.3	7.4	—	—	5.1	5.1	5.1
20		_	5.0	7.8	9.2	11.0	—	—	5.2	6.7	7.1	7.3	—	—	5.0	4.9	4.9
25		—	—	6.7	8.3	10.5	—	—	—	6.2	6.8	7.1	—	—	4.9	4.8	4.8
30		—	—	5.6	7.4	10.0	—	—	—	5.7	6.6	6.9	—	—	4.8	4.6	4.6
35		—	—	—	6.5	9.5	—	—	—	—	6.4	6.7	—	—	—	4.5	4.5
40	_	—	_		5.6	9.1	—	—	_	—	6.1	6.6	—	—	_	4.3	4.3
45	_	_	—	_	_	8.6	_	_	_	_	_	6.4	_	_	_	_	4.2
50			_	_		8.1	_	_	_	_	_	6.2	—	_	_	_	4.0


Note: Maximum operating pressure is 175 psig (12 bar). No increase in capacity with motive pressure over 150 psig (10 bar).

1-1/2" Stai	I-1/2" Stainless Steel Sump Ejector Capacities in gallons per minute (gpm)																	
Discharge		Wate	er Temp	erature	60°F			Wate	r Tempe	erature 1	100°F			Wate	r Tempe	erature 1	40°F	
Discharge Head (ft)		Motive Steam Pressure (psig)						Motive	Steam	Pressure	e (psig)			Motive	Steam	Pressure	e (psig)	
ficau (it)	60	80	100	120	150	175	60	80	100	120	150	175	60	80	100	120	150	175
5	23.0	34.0	42.2	48.4	56.8	55.8	23.2	34.1	42.2	49.9	55.3	56.0	26.3	36.1	46.3	46.2	41.1	41.0
10	_	28.4	38.0	43.2	51.0	51.2	_	28.9	37.2	44.5	52.1	54.8	_	28.9	38.2	43.5	41.1	40.9
15	_	—	35.0	37.9	46.5	50.4	—	—	31.3	39.3	48.9	53.1	—	—	30.7	38.1	41.1	40.9
20	_	_	26.1	33.5	44.4	49.5	_			35.0	44.7	51.4	_	_	23.6	33.4	41.2	40.8
25	_	_	_	29.0	39.5	48.0	_			30.9	40.3	47.2	_	_	_	_	41.4	40.5
30	_	_	_		35.2	43.5	_		_	_	36.5	43.9	_	_	_	_	_	
35	_	_	_	_	31.1	38.8	_	_	_	_	32.3	39.1	_	_	_	_	_	
40	—	—				34.3	—	—	—			35.7			_		—	

CC Series Condensate Coolers

Drain Tempering Service

Typical Installation

Description

Armstrong's Condensate Cooler is a device that mixes hot condensate or hot water with a cold water supply to reduce the temperature to acceptable discharge drain temperatures as required by city and state codes. It is a pre-assembled package that is suitable for any plumbing system. When hot condensate or hot water is drained into the condensate cooler body, the tempering valve opens and allows cold water to enter the chamber and mix with hotter liquid, cooling it to a preset temperature level of 135°F (57°C) or to a desired field set temperature.

Capacities (Total of condensate and cooling water combined)

5 gpm (19 lpm)
12 gpm (45 lpm)
25 gpm (95 lpm)
40 gpm (151 lpm)

To determine condensate load, use the following formula:

- $\frac{(B C)}{(H C)} \times Model = gallons of hot liquid or condensate$
- Where: B = Set point of tempering valve (preset to 135°F) C = Cold water temperature H = Hot water temperature or condensate temperature

Example:

 $\frac{(135-50)}{(180-50)} \times 5 (CC-5) = 3.25^{*}$

3.25 gal x 8.33 lbs per gallon x 60 = 1,624 lbs per hour

* In the example, Model CC-5 (5 gpm) can handle 3.25 gpm of 180°F liquid. If cold water temperature or discharge temperature changes, the capacity will change.

Tempered Condensate Range

Factory preset 135°F (57°C) Field adjustable range 115 to 180°F (46 to 82°C) Maximum cold water pressure 150 psig (10 bar)

Materials

Body: CC-5 and CC-12 CC-25 and CC-40 Pipe and Fittings: Body (Controller): Sensing Bulb:

ASTM A48 cast iron Carbon steel Malleable iron Brass Bronze

For a fully detailed certified drawing, refer to: CC-5 CDY #1000 CC-25 CDY #1091 CC-12 CDY #1073 CC-40 CDY #10923

Physical Data									
Model	CC	-5	CC	-12	CC	-25	CC	-40	
Pipe Connection	in	mm	in	mm	in	mm	in	mm	
Vent	3/4	20	1-1/2	40	1-1/2	40	2	50	
Hot Condensate Inlet	3/4	20	1-1/2	40	1-1/2	40	2	50	
Tempered Condensate Outlet	1-1/4	32	1-1/2	40	2	50	2-1/2	65	
Cold Water Inlet	3/8	10	3/4	20	1	25	1	25	
"H"	13	330	23	584	29	737	32-13/16	833	
"W"	12-1/2	318	14-3/16	361	13	330	14-1/2	368	
"A"	10-13/16	275	20-5/16	516	27-1/2	698	31	787	
"В"	9-1/2	241	19-3/16	487	13-13/16	351	15-5/16	389	
"C"	6-1/2	165	11-7/8	302	19-13/16	503	21-9/16	548	
"D"	11	279	11	279	11	279	12	305	
Weight, Ib (kg)	15 (6.8)	77 ((35)	81	(37)	93 (42)		

Armstrong MS-6 Noiseless Heater

The use of hot water is indispensable in food processing, cleaning, and plating operations. Although the simplest and most efficient way to provide the water is by direct steam sparging, such a format often results in vibration and noise caused by steam blowing into the water tank. These problems can be greatly reduced by mounting an MS-6 noiseless heater at the end of the pipe.

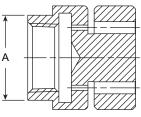
Features

- · Stainless steel construction for greater durability
- · Mounting is simple and economical
- Maintenance free

Formula for Calculating Steam Load to Heat Water in Tank

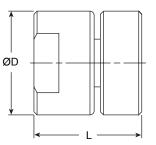
 $\frac{\text{lbs/hr}}{\text{Lat x T}} = \frac{\text{Gal x } \Delta T \text{ x 8.3}}{\text{Lat x T}}$

- Gal = Gallons of water to be heated
- ΔT = Temperature rise °F
- Lat = Latent heat of steam (Btu/lb)
- T = Time in hours


Specifications	
Fluid	Steam
Pressure Range	7 - 100 psi (0.5 - 7 bar)
Silencing Limit Temperature	190°F (90°C)
Material	304 Stainless Steel
Connection	NPT

Dimensions and Weights												
Connection Size	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Connection Size	1/2	15	3/4	20	1	25	1-1/4	32	1-1/2	40	2	50
"L"	1-15/16	49	1-15/16	49	2-1/16	52	2-3/16	55	2-5/16	59	2-9/16	65
"D"	1-3/8	35	1-1/4	45	2	50	2-3/8	60	2-3/4	70	4-1/8	105
"A"	1-3/16	30	1-7/16	36	1-5/8	41	2	50	2-3/8	60	3-9/16	90
Weight, Ib (kg)	0.55 (0.	25)	0.88 (0.	40)	1.15 (().52)	1.70 (0.77)	2.54	(1.15)	6.59 ((2.99)

		Connection Size										
Inlet, psi (bar)	1/	2"	3/	4"	1"		1-1/4"		1-1/2		2	
	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr
7 (0.50)	54	25	129	58	157	71	190	86	291	132	362	164
10 (0.70)	65	30	147	67	179	81	222	101	323	147	413	187
15 (1.00)	84	38	177	80	214	97	276	125	376	171	498	226
20 (1.38)	103	46	208	94	250	113	330	150	430	195	582	264
30 (2.00)	140	63	269	122	321	146	439	199	536	243	751	341
40 (2.76)	177	80	330	149	392	178	547	248	643	292	921	418
50 (3.45)	214	97	390	177	463	210	655	297	749	340	1,090	494
60 (4.14)	251	114	451	205	534	242	764	346	856	388	1,259	571
70 (4.83)	289	131	512	232	605	275	872	395	963	437	1,428	648
80 (5.52)	326	148	573	260	676	307	980	445	1,069	485	1,597	725
90 (6.20)	363	165	634	288	748	339	1,088	494	1,176	533	1,767	801
100 (6.90)	400	181	695	315	819	371	1,197	543	1,282	582	1,936	878


Armstrong

Steam 🔿

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

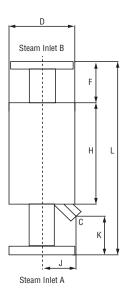
559

Description

Armstrong's AEH series carbon steel exhaust heads should be used when there is a risk of water carryover up an atmospheric vent pipe. The internal knock-out plate and stainless steel mesh screening effectively contains water carry-over and discharges it through the bottom drain leaving dry flash steam to vent through the top of the vessel.

Connections

Flanged Drain ASME B16.5 CL 150 FNPT


How To Order

Exhaust heads are typically sized to match existing vent line connections. Choose the Armstrong model below which best fits your application.

(Note: 1. Excessive carryover could be caused by leaking steam traps or undersized vents. 2. Not for use on Safety Relief Valves.)

Materials	
Part Name	AEH Series
Body	Carbon Steel
Baffle Plate	Carbon Steel
Screens	304 Stainless Steel
Flange	Carbon Steel
Connection Pipe	Carbon Steel

Dimensions									
	Connection Size		D	H	L	F	K	J	
Model	Steam Inlet A In (mm)	Steam Outlet B In (mm)	Drain C In (mm)	In (mm)	In (mm)	In (mm)	In (mm)	In (mm)	In (mm)
AEH20592-2	2 (50)	2 (50)	3/4 (19)	6-1/4 (159)	9-13/16 (250)	18-1/2 (470)		3-5/8 (92)	3-1/4 (82)
AEH20592-3	3 (80)	3 (80)	3/4 (19)	8-5/8 (219)	11-13/16 (300)	21-5/8 (550)		4-13/16 (122)	4-1/8 (105)
AEH20592-4	4 (100)	4 (100)	1 (25)	10-3/4 (273)	13-3/4 (350)	24-13/16 (630)	4 (100)	5-11/16 (145)	5-3/16 (132)
AEH20592-6	6 (150)	6 (150)	1-1/2 (38)	12-13/16 (325	15-3/4 (400)	27-9/16 (700)	4 (100)	6-1/2 (165)	6-1/4 (158)
AEH20592-8	8 (200)	8 (200)	2 (50)	16-3/4 (426)	17-3/4 (450)	30-11/16 (780)		7-3/8 (188)	8 (204)
AEH20592-10	10 (250)	10 (250)	2 (50)	20 (508)	19-11/16 (500)	33-7/16 (850)		8-3/16 (208)	9-3/8 (238)

Ancillary Products

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

561

Service, Training and Warranties

Armstrong

Armstrong[®] Discover the Armstrong Service Advantage

Energy Solutions: More Than Just Cost Reduction

Rapidly evolving technology, global competition and rising energy prices have quickened the pace of doing business today and raise the stakes for success. Opportunity exists everywhere, but only the best and fastest will capitalize on it. Conventional paradigms of utility system infrastructure are simply inadequate to today's high-pressure realities. As competition increases, far-reaching energy solutions must:

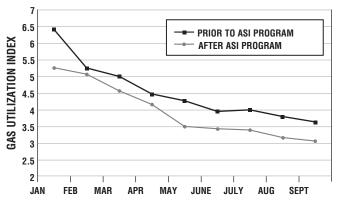
- · Contain or reduce cost
- Reduce production downtime
- Ensure system reliability
- · Improve use of human resources
- Maximize assets
- Complement your core business
- Drive shareholder value
- Reinforce your company's environmental commitment
- · Be effective on a global basis

ASG: Single-Source Accountability for Energy Management Solutions

Armstrong Service Group (ASG) is a subsidiary of Armstrong International, which has provided a century of energy management expertise for industrial, institutional and commercial facilities worldwide. ASG can help your global business save money, and can free up time and resources you can apply to your core operations.

ASG offers several energy management options that can be customized to meet your specific short- and long-term needs.

- Utility monetization. ASG will purchase your utility assets outright for a specified value, freeing up cash for you to use in other areas of your organization.
- Utility optimization. Under this financing option, we begin by identifying energy-saving projects within your utility systems (steam, electric, air, refrigeration, wastewater and water). Your utility systems are upgraded to optimum levels and sustained by ASG under a program completely funded by us.
- **Turn-key sustaining engineering.** With this long-term agreement, ASG implements initial engineering and construction/installation. We provide continuing engineering solutions for further energy optimization opportunities.
- Long-term operation and maintenance. To provide you with the ultimate flexibility, ASG will enter into a flexible operation and maintenance agreement ensuring "best in class" performance for the life of the contract.


In order to determine the energy management solution that best meets your specific needs, ASG begins with a comprehensive evaluation and analysis of all your utility systems, including

- Fuel supply
- Powerhouse
- Cogeneration viability
- Steam generation/distribution
- Condensate return systems
- Heat recovery systems
- Heat tracing systems
- Compressed air generation and distribution
- Hot Water Systems
- Cooling Water Systems
- Water/wastewater treatment
- Electrical system
- · Operating and maintenance efficiency

In our mission to customize services to meet your energy needs, we offer all of the above as a complete energy audit process or as individual services.

Whichever option best meets your needs, ASG assures you that your energy system infrastructure will be optimized and maintained in the most efficient, energy-saving, cost-reducing manner.

One hundred years of experience, combined with a select group of partners, enable ASG to customize the energy solution best for you.

Actual Example of 12.7% Reduction in Gas Utilization During the First Nine Months out of a Year as Compared to the Previous Year.

Armstrong University Energy Seminar

Knowledge Not Shared Is Energy Wasted®

Since Armstrong designed and manufactured its first steam trap in 1911, we've solved virtually every imaginable problem in steam trapping and steam humidification. In the process we've accumulated a substantial body of information. It's practical know-how, not just theory. And for years we've shared this knowledge with anyone interested. We go to great lengths to share what we know because we're convinced that this kind of interaction is the best way to solve problems, meet individual needs and maximize the return on your energy investment.

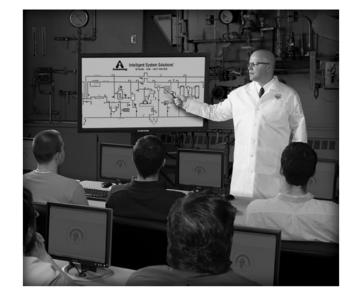
Steam Energy Seminars are held at Armstrong's manufacturing headquarters in Three Rivers, Michigan. Armstrong also operates seminar facilities in Liege, Belgium, Chennai, India, and Beijing, China.

With the help of sophisticated sound and projection equipment and an elaborate working model of a steam system with live steam and glass piping, you'll see how different types of steam traps perform under various conditions.

Starting With the Basics

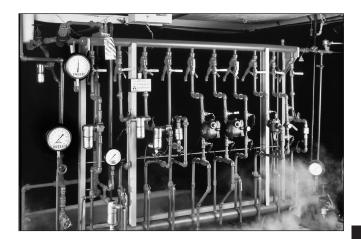
At an Armstrong University Energy Seminar, you'll learn how to cash in on long-term labor, material and energy savings. Starting with the basics, you'll review the fundamentals of steam.

Your Armstrong instructors have both the technical background and the field experience to make information relevant. Understandable. With their help, you'll walk step-by-step through the installation, operating/energy characteristics and maintenance of all kinds of steam traps.


Sessions are informal, with plenty of chances to participate and ask pointed, specific questions. (If you desire, a presentation can be tailored to your specific needs.) You'll also be able to listen to the questions and problems of others in the industry and discuss how their solutions may benefit your steam system.

At Armstrong University, there's no pressure selling. Basic information is presented honestly. And the demonstrations speak for themselves. We are here to build relationships with our customers.

Applying Know-How


When you come to Armstrong University, you'll see firsthand the importance of trap selection and sizing—and why savings begin with proper installation and integration of steam system components.

You will also examine how steam trap selection, sizing and installation bear on energy consumption, downtime and maintenance. What's more, you'll review the guidelines for trapping steam distribution systems, tracer lines and various types of heating, process and heat exchange equipment.

In short, you'll learn about savings. Not as some loosely defined goal, but as hard, no-nonsense gains you can measure on a year-end chart.

Topics such as corrosion, water hammer and thermal stress will be discussed. And because each seminar can be tailored to your specific interests, special topics of individual concern may also be covered. Tell us what you want to know, and we'll emphasize it for you.

Service, Training and Warranties

Armstrong[®] Reference Guide to Armstrong's Training Aids

Classroom Training Aids

Training for Energy Conservation

In a survey of plant engineers, plant managers and key maintenance engineers, 89% said that there will be a greater need for training in the years ahead. One of the primary areas of training will be in the arena of steam system maintenance because of the great potential to save energy and money.

Since building its first steam trap in 1911, Armstrong has been committed to sharing information and technical knowledge on steam energy conservation. Armstrong not only shares this information with its Representatives, but for years it has conducted seminars for its customers. Seminars have been conducted in our facilities as well as in customers' plants.

To extend its training program further, Armstrong assists many companies in developing their own in-house training activities. This guide is published to inform these trainers of the educational resources available from Armstrong. Many of the training aids are available at no charge. Other resource materials are available at a nominal charge. These items are marked with a dollar sign (\$). For prices, contact Armstrong's Marketing Department.

Armstrong offers an extensive list of handbooks, catalogs and bulletins covering a wide range of topics. Some of these publications provide valuable resource material for classroom instruction.

Armstrong also provides many other training aids to help trainers conduct programs on various aspects of steam system operation and maintenance. Following are some of the materials for planning and implementing an effective steam system maintenance program.

Line Card 320 with Catalog CD-ROM: Line Card 320 includes a CD-ROM of Armstrong's catalog, Solution Source for Steam, Air and Hot Water Systems. The CD also features "Steam Conservation Guidelines for Condensate Drainage," which is recognized as one of the most authoritative discussions on steam, steam traps and steam energy conservation available today.

Sectional Models: Being able to see inside steam traps has been effective in helping people who work with traps to understand how they operate. Armstrong offers more than a dozen different sectional models of its steam traps and related products. Also available are glass traps, which allow students to view the operation of various steam trap types. \$

DVDs: While Armstrong has more than a dozen different DVDs available, three have been found most useful in training situations.

- Let's Talk Steam Traps/Update is a two-part, 32-minute DVD that discusses the operating principles of mechanical, thermostatic and thermodynamic steam traps. Designed to be used in conjunction with the Conservation Guidelines section of this catalog, the DVD discusses 10 steam system operating conditions that must be considered in evaluating steam trap performance. \$
- Guidelines for Steam System Efficiency is a 15-minute educational program covering basic considerations in the design, piping and trapping of steam systems. Topics covered in the DVD include correct sizing and installation of steam supply and condensate return lines, steam velocities in the system, the use of air vents, vacuum breakers and safety drains, and much more. This DVD stresses how low energy, maintenance and operational costs in your system can be achieved by proper design, installation and maintenance. \$
- Guidelines for the Prevention of Water Hammer is a 16-minute DVD explaining three types of conditions that cause water hammer. The damaging effects of water hammer to steam system components also are described. Recommendations are made in the DVD on the proper trapping and piping to reduce the potential for water hammer. The results of reducing or eliminating water hammer are a safer work environment, lower maintenance costs and reduced system downtime. \$

Steam-A-ware[™] Sizing and Selection Software: Proper sizing and specifying of steam traps, pressure reducing valves and water heaters is critical in order to save energy and extend equipment life. For users, this has continued to be a confusing and complex process. Now the easy-to-use Armstrong Steam-A-ware software program for sizing and selecting steam traps, pressure reducing valves and water heaters can be downloaded from Armstrong's Web site, armstronginternational.com.

Training for the Trainer

Armstrong recognizes the need to train the people who will be teaching others about the value of steam. In-house trainers are encouraged to avail themselves of the resources offered by Armstrong to make training programs effective and productive.

Seminars: One of the most effective means for trainers to learn about steam energy conservation is to attend and participate in Armstrong's steam energy seminars. Thousands of people have participated in these seminars, held monthly at Armstrong's demonstration laboratories in Three Rivers, Michigan; Liege, Belgium; Chennai, India, and Beijing, China. These multi-media seminars provide practical experience for trainers, engineers, maintenance personnel and energy managers.

Representatives

In-house trainers are encouraged to call their Armstrong Representatives as a valuable resource in planning and implementing programs. The Representative can serve as a catalyst in moving your program forward, and virtually all the training aids outlined in this book are available through your Armstrong Representative.

Often, training items may be borrowed from your Representative. He or she may be called on for advice and counsel and may serve as an authoritative resource speaker for your employees.

Continuing Education Aids

"Knowledge not shared is energy wasted[®]" is a philosophy of Armstrong, and the company is dedicated to the premise of sharing knowledge on a continuing basis. Furthermore, knowledge not applied is knowledge wasted. For example, a person may learn the techniques of testing steam traps in a classroom setting, but if it is not applied, the skill is quickly lost. Following are some training aids involving hands-on experience that are useful on a day-to-day basis.

Reprints: Sharpen Trap Testing Skills to Save Maintenance Hours and Conserve Energy is a reprint

from **POWER** Magazine. It was authored by Armstrong's technical staff, including engineers and research staff members. It stresses the importance of individual training and plenty of practical experience. The article also includes a copy of the steam trap testing flow chart.

Bulletin No. 310: Steam Trap Testing Guide for Energy Conservation is a small, shirt-pocket guide loaded with tips for effectively testing all types of steam traps. This step-bystep testing guide gives helpful hints on how to test traps by the sound method.

Bulletin No. 301: Service Guide is a 36-page handbook and fits easily into a pocket for on-the-job reference relating to inverted bucket steam traps. It contains valuable information ranging from installing traps to inspecting/testing, troubleshooting and a wide range of other helpful tips.

Armstrong's new and improved Website offers a userfriendly navigational interface to encourage all visitors to find product and service information with a few less clicks of a mouse. Completely reorganized and expanded, the site makes it possible to review every Armstrong product, service and system solution by industry or application. Product literature and technical specifications are available as downloads, as are CAD drawings. Requests for quotes are also available for more than 20 product families. Stop by today to learn more about Armstrong's intelligent system solutions!

Interactive Plant and Facility Tours

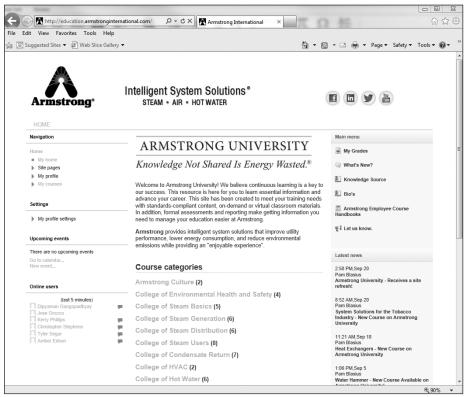
Service, Training

568

Take Armstrong's interactive tour to get an overview of how utility systems function in realistic settings. Navigate through a typical food plant, a pharmaceutical facility, many institutional buildings, and a hydrocarbon and chemical processing refinery to learn how solutions and products are applied in each atmosphere.

Learn about Intelligent System Solutions at armstronginternational.com

- System Solutions. Armstrong System Solutions are more than the sum of their parts. At Armstrong, it is the system that solves—and saves.
- **Product Solutions.** Every system solution begins with a smart, practical product that solves a problem. Hard-working products are at the heart of every Armstrong solution in steam, air or hot water.
- Service Solutions. Finally, the talent, personnel and financing to affordably optimize your utility operation— Armstrong will work with you to assess your system and identify your needs.
- Industry Solutions. The power of world-class energy expertise zeroes in on industry-specific targets. A longtime player in key global businesses, Armstrong understands the specific challenges of individual industries.


Armstrong University

At Armstrong, "Knowledge Not Shared Is Energy Wasted[®]" has been a theme and a way of life for years. For us, it's how we go about our business, how we build relationships with customers and solve problems—both inside and outside the company.

For you, it's a promise. It's our pledge to use what we know to make your business more efficient, more profitable and more rewarding. In many ways, Armstrong University is the capstone for a tradition of knowledge-sharing. It is certainly the most ambitious and comprehensive effort we've ever undertaken. That's why we're using "Knowledge Not Shared Is Energy Wasted" as both a motto and a statement of purpose for Armstrong University.

Whether you prefer to learn online or by participating in a seminar at one of our worldwide, fully equipped global learning centers, you're encouraged to enroll today.

Earn CEUs once you've completed Armstrong University!

- The Continuing Education Unit (CEU) is a nationally recognized standard for assessing the time spent in educational, professional development, or training activities.
- Armstrong in partnership with Spring Arbor University is proud to advise you that Armstrong University courses deliver training that carries CEUs from an accredited institution of higher education.

Knowledge Not Shared is Energy Wasted.

Armstrong University brings together the knowledge, products and people uniquely qualified to solve customer problems through the application of intelligent system solutions for steam, air and hot water utilities.

Enroll in courses that lead you through a solid understanding of basic steam, air and hot water utilities, an awareness and perspective concerning safety in the workplace, the habit of continued learning, and the power to enrich careers.

Sample course offering:

- Steam Basics
- Typical Steam and Condensate System Components
- Flash Steam
- Water Hammer
- Pressure and Temperature Control Essentials
- Fundamentals of Humidification
- Industrial/Institutional Hot Water Systems
- Legionella
- Personal Protective Equipment
- Lockout/Tagout Procedures

What Is Steam?

15:07 Minutes

This is the basics-of-steam primer... the "Steam 101" short course on the principles of steam that leads to a thorough understanding of the concepts outlined in the many Armstrong training DVDs and materials. Both live action video and clear, simple animation are used to illustrate steam properties and behavior. Everyday demonstrations and a straight-forward style help make this an informative and entertaining DVD, whether used as an introduction or as a refresher.

Guidelines for Steam System Efficiency

15:17 Minutes

This educational program covers basic considerations in the design, piping and trapping of steam systems. Topics include correct sizing and installation of steam supply and condensate return lines; steam velocities in the system; proper steam trap installation; trap safety factors; the use of air vents, vacuum breakers and safety drains; and how non-condensables affect the performance and service life of heat exchanger equipment.

Guidelines for the Prevention of Water Hammer 16:15 Minutes

The purpose of this educational tool is to help customers understand the nature and severity of the water hammer problem.

Using live action video and computer animation, this program identifies the most likely causes of water hammer and provides solutions that can be implemented to prevent its occurrence. With a better understanding of the problem, more preventive measures and equipment can be designed into new or existing installations. The results will be safety for personnel, lower maintenance costs and reduced system downtime.

Let's Talk Steam Traps/Update 32:00 Minutes

Part one uses animation techniques to help viewers see and understand the operating principles of the three types of traps: mechanical, thermostatic and thermodynamic. In addition, the DVD helps steam trap users understand the internal

operation of inverted bucket steam traps, differential condensate controllers, float and thermostatic traps, thermostatic traps, and disc traps.

The second part of this 32-minute DVD discusses 10 steam system operating conditions that must be considered in evaluating steam trap performance. The five types of traps are then rated on how they respond to these 10 different operating conditions.

Guidelines for Steam Trap Troubleshooting and Testing 18:40 Minutes

Just as properly functioning steam traps contribute to the efficient operation of a steam system, those that are malfunctioning can result in lost steam, lost heat and, especially, lost dollars. Guidelines for Steam Trap Troubleshooting and Testing not only outlines the need for establishing a preventive maintenance program, but details what to look and listen for in your testing.

This DVD recommends a step-by-step approach plant energy technicians can take to steam trap testing and problem solving. It emphasizes use of the faculties of both sight and hearing in gathering information, then applying training and experience to properly evaluate the results.

The Anatomy of the I.B. 15:00 Minutes

The Anatomy of the I.B. uses production techniques to look inside the inverted bucket steam trap. This DVD uses both cell animation and an operating glass-bodied model of an inverted bucket steam trap to show its components and observe its performance.

Guidelines for Unit Heater Efficiency 9:44 Minutes

Every winter industry relies on unit heaters to provide a comfortable environment for workers. The heating season is no time for the nuisance and discomfort of unit heater repair or replacement.

This video program discusses how correct selection, installation, and maintenance of steam supplied unit heaters ensures longer service life and reduces unnecessary repair and replacement costs.

Guidelines for Freeze Prevention

10:52 Minutes

Freezing in outdoor steam systems is a costly maintenance and production problem. Certain guidelines can be followed to minimize damage and process interruptions due to freezing. In addition to highlighting these piping and trapping guidelines, the DVD covers an often overlooked problem that can prevent total drainage of the system.

Graphics and glass piping illustrate why condensate remains in or upstream of various types of traps after steam systems are shut down. The DVD discusses what can be done to get rid of remaining condensate by the use of temperature and pressure actuated safety drains.

Service, Training and Warranties

Armstrong DVDs

It's the Humidity

Part 1—24:58 Minutes Part 2—20:57 Minutes

Part one is a video documentary covering the essentials of humidity and outlining the primary reasons for humidity control. What is humidity? Relative humidity? What is dew point? Enthalpy? How does evaporation affect comfort? How does humidity conserve energy? All of these questions are answered in practical and entertaining demonstrations.

Part two is a look at the four basic methods of large scale humidification. Through animation, the DVD discusses the operation of evaporative pan, wetted element, water spray and steam humidifiers, and rates their ability to meet efficiency, maintenance, controllability, sanitation and cost requirements.

Guidelines for Steam Trap Repair

20:41 Minutes

This DVD begins by outlining a plan for identifying faulty traps and returning them to effective operation. The first part of the DVD provides guidelines for the inspection and repair of any trap.

The second part addresses specific trap types—inverted bucket, float and thermostatic, disc, and thermostatic. Each trap requires individual considerations, and attention is given to the differences as well as the common concerns.

The Armstrong Differential Condensate Controller 18:36 Minutes

To the paper, textile and boxboard industries, proper condensate drainage from steam heated cylinder dryers is necessary to optimize production and conserve heat energy.

This DVD discusses the standard steam trap drainage method and the blow-through method of condensate removal.

The Armstrong differential condensate controller, the DVD points out, combines features of both methods, and overcomes the drawbacks of both. The result is efficient removal of condensate and air, minimum steam loss, and higher and more uniform temperatures across the dryer surface.

Let's Talk PRVs

30:00 Minutes

Pressure reducing valves, or PRVs, are important to the efficient use of fluids and gases in industry.

Let's Talk PRVs is an in-depth look at the reasons for, configurations of, and means of evaluating pressure reducing valves.

Through animation, the viewer looks inside several different types of PRVs to gain an understanding of their operating principles. This understanding will help the viewer select the right PRV for a particular application.

Guidelines for Steam/Air Coil System Design 13:12 Minutes

This educational video program explains the major causes of frozen steam coils, and the steps that can be taken to prevent the problems. The program uses the air handling system assembled in the Armstrong demonstration lab to illustrate problems and solutions. Glass piping and glassbodied traps allow viewers to see the flow of condensate and to witness adverse effects of improper system design, as well as the benefits of corrective measures.

Guidelines for Ultra Capacity Steam Trap Repair 23:00 Minutes

This DVD begins by outlining a plan to return individual faulty traps to effective operation. The first part of the DVD provides guidelines to be followed in the inspection and repair of any trap.

In the second part, Armstrong's ultra capacity F&Ts (Models J, K, L and M) are disassembled, repaired and returned to service. Both single orifice and dual orifice variations are covered.

Limited Warranty and Remedy

Armstrong International, Inc. or the Armstrong division that sold the product ("Armstrong") warrants to the original user of those products supplied by it and used in the service and in the manner for which they are intended, that such products shall be free from defects in material and workmanship for a period of one (1) year from the date of installation, but not longer than 15 months from the date of shipment from the factory, Junless a Special Warranty Period applies, as listed below]. This warranty does not extend to any product that has been subject to misuse, neglect or alteration after ship¬ment from the Armstrong factory. Except as may be expressly provided in a written agreement between Armstrong and the user, which is signed by both parties, Armstrong DOES NOT MAKE ANY OTHER REPRESENTATIONS OR WARRANTIES. EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE.

The sole and exclusive remedy with respect to the above limited warranty or with respect to any other claim relating to the products or to defects or any condition or use of the products supplied by Armstrong, however caused, and whether such claim is based upon warranty, contract, negligence, strict liability, or any other basis or theory, is limited to Armstrong's repair or replacement of the part or product, excluding any labor or any other cost to remove or install said part or product, or at Armstrong's option, to repayment of the purchase price. As a condition of enforcing any rights or remedies relating to Armstrong products, notice of any warranty or other claim relating to the products must be given in writing to Armstrong: (i) within 30 days of last day of the applicable warranty period, or (ii) within 30 days of the date of the manifestation of the condition or occurrence giving rise to the claim, whichever is earlier. IN NO EVENT SHALL ARMSTRONG BE LIABLE FOR SPECIAL, DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING, BUT NOT LIMITED TO, LOSS OF USE OR PROFITS OR **INTERRUPTION OF BUSINESS.** The Limited Warranty and Remedy terms herein apply notwithstanding any contrary terms in any purchase order or form submitted or issued by any user, purchaser, or third party and all such contrary terms shall be deemed rejected by Armstrong.

Special Warranty Periods are as follows:

Stainless Steel Products Series 1000, 1800, 2000 — Three (3) years after installation, but not longer than 39 months after shipment from Armstrong's factory; OR for products operated at a maximum steam pressure of 400 psig/28 barg saturated service, the warranty shall be Five (5) years after installation, but not longer than 63 months after shipment from Armstrong's factory.

Series EHU-700 Electric Steam Humidifier, Series HC-6000 HumidiClean Humidifier and GFH Gas Fired Humidifier with ionic beds — Two (2) years after installation, but not longer than 27 months after shipment from Armstrong's factory.

Internal Mechanism on PT100, 200, 300, 3500 and 400 Series Standard Pumping Traps — Three (3) years after installation, but in no event longer than 39 months after shipment from Armstrong's factory.

Internal Mechanism on PT100, 200, 300, 3500 and 400 Series Replacement Cap Assemblies and Rescue Cap® — Three (3) years after installation, but in no event longer than 39 months after shipment from Armstrong's factory.

Electric Pump Seals are not covered in the above warranty.

Limited Warranty and Remedy

Armstrong Hot Water Group, Inc. ("Armstrong") warrants to the original user of those products supplied by it and used in the service and in the manner for which they are intended, that such products shall be free from defects in material and workmanship for a period of one (1) year from the date of installation, but not longer than 15 months from the date of shipment from the factory [unless a Special Warranty Period applies, as listed below]. This warranty does not extend to any product that has been subject to misuse, neglect, or alteration after shipment from the Armstrong factory. Except as may be expressly provided in a written agreement between Armstrong and the user, which is signed by both parties, Armstrong DOES NOT MAKE ANY OTHER **REPRESENTATIONS OR WARRANTIES, EXPRESS** OR IMPLIED. INCLUDING. BUT NOT LIMITED TO. ANY IMPLIED WARRANTY OF MERCHANTABILITY **OR ANY IMPLIED WARRANTY OF FITNESS FOR A** PARTICULAR PURPOSE.

The sole and exclusive remedy with respect to the above limited warranty or with respect to any other claim relating to the products or to defects or any condition or use of the products supplied by Armstrong, however caused, and whether such claim is based upon warranty, contract, negligence, strict liability, or any other basis or theory, is limited to Armstrong's repair or replacement of the part or product, excluding any labor or any other cost to remove or install said part or product, or, at Armstrong's option, to repayment of the purchase price. As a condition of enforcing any rights or remedies relating to Armstrong products, notice of any warranty or other claim relating to the products must be given in writing to Armstrong: (i) within 30 days of last day of the applicable warranty period, or (ii) within 30 days of the date of the manifestation of the condition or occurrence giving rise to the claim, whichever is earlier. IN NO EVENT SHALL ARMSTRONG BE LIABLE FOR SPECIAL, DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING, BUT NOT LIMITED TO, LOSS OF USE OR PROFITS OR INTERRUPTION OF BUSINESS. The Limited Warranty and Remedy terms herein apply notwithstanding any contrary terms in any purchase order or form submitted or issued by any user, purchaser, or third party and all such contrary terms shall be deemed rejected by Armstrong.

Special Warranty Periods are as follows:

FIo-Rite-Temp[™] Instantaneous Water Heater—The tube bundle shall have a 10-year guarantee against failure caused by materials or workmanship provided by Armstrong but not against gasket failure or damage caused by corrosion, water hammer or lack of proper cleaning.

FIo-Rite-Temp Packaged Instantaneous Water Heater— Two (2) years from the date of installation, but not longer than 27 months from the date of shipment.

Flo-Direct® Gas Fired Water Heater—The stainless steel structure and the stainless steel internals (flame tube, pall rings, supports, etc.) shall have a ten (10) year non-prorated guarantee against burn out or any structural failure caused by materials and workmanship. Provided only clean potable water is heated. The other components on the Flo-Direct, such as valves, combustion equipment, electrical controls, and the burner, shall have a two (2) year non-prorated guarantee against failure caused by materials and workmanship.

Limited Warranty and Remedy

Armstrong-Hunt, Inc. ("Armstrong") warrants to the original user of those products supplied by it and used in the service and in the manner for which they are intended, that such products shall be free from defects in material and workmanship for a period of one (1) year from the date of installation, but not longer than 15 months from the date of shipment from the factory [unless a Special Warranty Condition and Period applies, as listed below]. This warranty does not extend to any product that has been subject to misuse, neglect, or alteration after shipment from the Armstrong factory. Except as may be expressly provided in a written agreement between Armstrong and the user, which is signed by both parties, Armstrong DOES NOT MAKE ANY OTHER **REPRESENTATIONS OR WARRANTIES, EXPRESS** OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE.

The sole and exclusive remedy with respect to the above limited warranty or with respect to any other claim relating to the products or to defects or any condition or use of the products supplied by Armstrong, however caused, and whether such claim is based upon warranty, contract, negligence, strict liability, or any other basis or theory, is limited to Armstrong's repair or replacement of the part or product, excluding any labor or any other cost to remove or install said part or product, or, at Armstrong's option, to repayment of the purchase price. As a condition of enforcing any rights or remedies relating to Armstrong products, notice of any warranty or other claim relating to the products must be given in writing to Armstrong: (i) within 30 days of last day of the applicable warranty period, or (ii) within 30 days of the date of the manifestation of the condition or occurrence giving rise to the claim, whichever is earlier. IN NO EVENT SHALL ARMSTRONG BE LIABLE FOR SPECIAL, DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING, BUT NOT LIMITED TO, LOSS OF USE OR PROFITS OR INTERRUPTION OF BUSINESS. The Limited Warranty and Remedy terms herein apply notwithstanding any contrary terms in any purchase order or form submitted or issued by any user, purchaser, or third party and all such contrary terms shall be deemed rejected by Armstrong.

Special Warranty Conditions and Periods are as follows:

6000 Series Coils and Duralite Plate Fin Coils—Warranty does not apply to core failure due to external or internal corrosion caused by improper selection of materials, drainage devices, or installation by the customer. CAUTION: Subcooling drainage devices are improper for use on Armstrong-Hunt steam coils. Contact your Armstrong-Hunt, Inc. Representative for further details.

Unit/Door Heaters—For a period of three (3) years after installation but not longer than thirty-nine (39) months from the date of shipment, provided, however, that said warranty on copper tube/plate fin cores is limited to one (1) year after installation or fifteen (15) months from date of shipment, whichever occurs sooner. This warranty does not apply to motors or other electrical equipment supplied with said Unit/ Door Heaters, nor to core failures due to external or internal corrosion caused by improper selection of materials or improper drainage device selection. CAUTION: Subcooling drainage devices are improper for use on Armstrong-Hunt Unit/Door Heaters. Contact your Armstrong-Hunt, Inc. Representative for further details.

Trademark Information

Nomex and Teflon are registered trademarks of E.I. du Pont de Nemours and Company.

Dowtherm is a trademark of The Dow Chemical Company or an affiliated company of Dow.

Duracell is a registered trademark of Duracell Inc. Corporation.

- Windows and Microsoft are registered trademarks of Microsoft Corporation.
- Pentium is a registered trademark of Intel Corporation.
- Ryton is a registered trademark of Chevron Phillips Chemical Co.
- Lexan is a registered trademark of General Electric Company.
- Viton is a registered trademark of DuPont Dow Elastomers.

Sign-Up Form

Ordering Information

Name:
Title:
Company Name:
Street Address:
City/State/ZIP/Country:
Phone Number: Fax Number:
E-mail Address:
 Please send me the following sizing and selection software at no charge: Steam-A-ware[™] Sizing and Selection Software Steam-A-ware sizing and selection for steam, air and hot water systems. Includes steam traps, pressure reducing valves, control valves, temperature regulators and water heaters of various types, sizes and configurations for any application. Easy-to-use Steam-A-ware allows you to store multiple product specifications in a schedule and access Armstrong's library of materials from the CD or the Web. □ Humid-A-ware[™] (Humidification) Sizing and Selection Software
□ Please send me information about Armstrong University Live Seminars.
□ Please send me this catalog on CD-ROM. Bulletin 320.
For pricing on DVDs and sectional models, call Armstrong's Marketing Department at (269) 273-1415 or e-mail marketing@armstronginternational.com.

Service, Training and Warranties

Armstrong International

2081 SE Ocean Boulevard 4th Floor Stuart, FL 34996-3376 Phone: (561) 286-7175 Fax: (561) 286-1001 armstronginternational.com

Armstrong International - North America

816 Maple Street Three Rivers, MI 49093 Phone: (269) 273-1415 Fax: (269) 278-6555 **armstrong**international.com

Georgia/Florida Sales Office

Phone: (800) 205-0730 Fax: (800) 722-5275

Canadian Manufacturing

648 Moeller Street Granby, Quebec J2G 8N1 Canada Phone: (450) 378-2655 Fax: (450) 375-3787 **armstrong**international.com

Armstrong International - Latin America

Calle Industria 1228-A Col. El Mirador, Zona Oblatos. Guadalajara, Jal. CP 44380, Mexico Phone: +52 (33) 3849-0327 Fax: +52 (33) 3883-1799 **armstrong**international.com

Armstrong International - India

Mahindra World City P 46, Eighth Avenue Anjura Village, Nathm Sub Chengalpattu 603 002 India Phone: (044) 3747-4444 Fax: (044) 3747-4440 **armstrong**international.in

Armstrong - China

40 Yongda Road Beijing Bioengineering and Pharmaceutical Industrial Park (C8P) Daxing District Beijing 102600, P.R. China Phone: (86) (10) 6125-5888 Fax: (86) (10) 6925-0761 armstrong.com.cn

Armstrong International -Europe/Middle East/Africa

Parc Industriel des Hauts-Sarts 2nd Avenue 4, B-4040 Herstal Liege, Belgium Phone: +32 (0)4 240 90 90 Fax: +32 (0)4 248 13 61 **armstrong**international.eu

United Kingdom Sales Office

Manchester Business Park 3000 Aviator Way M22 5TG Manchester United Kingdom Phone: +44 (0) 161 266 2279 Fax: +44 (0) 161 266 1001

Italy Sales Office

Via Orbetello 81 I-10 148 Torino, Italy Phone: (39) (011) 200035 Fax: (39) (011) 2425744

France Sales Office

Route du Hoc BP 102 76700 Gonfreville L'Orcher, France Phone: (33)(2) 35.53.68.35 Fax: (33)(2) 35.53.68.37

Armstrong International - Pacific Rim

3-Na, 503Ho, 1289-2, Jeongwang-dong, Siheung-si Gyeonggi-do, 429-850, Republic of Korea Phone: (82)(031) 497-5310 Fax: (82)(031) 497-5311

8 Temasek Boulevard #42-01 Suntec Tower Three Singapore 038988 Phone: (65) 6866-3766 Fax: (65) 6866-3636

Yoshitake-Armstrong, Inc.

955-5, Miyamae Irukadesinden Komaki, Aichi, 485 Japan Phone: (81) (568) 75-7551 Fax: (81) (568) 75-7563 www.yoshitake.co.jp

576

MODEL NUMBER INDEX

For model numbers/products arranged by product category, see the ID Charts at the beginning of each product section.

Model No.	Page No.	Model No.	Page No.
1-AV	-		. agoo.
		91 DC	112
1-AVC		81-DC	· · -
1-AVCW		82-DC	
1-LD		83-DC	
1-LDC	. 502	84-DC	112
1-LDCW	. 505	85-DC	112
		86-DC	112
2-AV	456		
2-DG	. 518	100-LS	136
2-LD	509	125-JD	126
		150-LS	
3-AV	456	175-JD.	
3-DG		180-LD.	
3-LD.		181-LD.	
J-LD	. 509	101-LD	512
6-AV	456	211	74
6-DG		211 BVSW	506
6-LD.		212	
	. 505		
	460	212 BVSW	
11-AV		213	
11-LD		213 BVSW	
13-AV		214	
13-LD	. 510	215	
15-JD	. 126	216	74
		250-JD	126
20-JD	. 126	250-LS	
21-312	. 514	250-MS	136
21-AR	469		
21-312 AR	469	300-JD	126
21-312 VAR	. 469	300-KD	126
21-DC	. 110	310	86
21-LD	514	310-FW	86
22-AV	460	312	86
22-DC	110	312 BVSW	
22-LD.		312-FW	86
23-DC		313	86
24-DC		313 BVSW	506
25-DC		313-FW	
26-DC		314	
20-DC	. 110	314-FW	86
30 10	100/500	314-FW	
30-JD			
30-KD	. 126/520	315-FW	86
30-LS		316	
32-AV		316-FW	
32-DG		360° Connector Block	152
32-LD			
33-AV		401-SH	
33-DC		411G	
33-DG	. 518	411G-FW	88
33-LD	. 511	413	90
34-DC	. 116	413-FW	90
35-DC	. 116	415 (steam trap)	90
36-AV	458	415-FW (steam trap)	90
36-DC	. 116	416	
36-DG	. 518	416-FW	90
36-LD		421	
		421-FW	88
50-KD	126/520	450-LS	
71-315		450-MS	
71-A			
75-JD		501-SH	92
	-		

MODEL NUMBER INDEX Armstrong[®]

For model numbers/products arranged by product category, see the ID Charts at the beginning of each product section.

Model No.	Page No.	Model No.	Page No.
		6155G	96
800	76	6155G-FW	
800 BVSW			00
811		25133G-HLAR	462
811 BVSW		25133G-HLS	
812		25155G-HLAR	
		25155G-HLS	
813		26155G-HLAR	
813 BVSW		26155G-HLS	516
814			
815		A3	
816		A4	122
880		A5	122
880 BVSW	506	A6	122
881	80	A8	122
881 BVSW	506	A1FL 125	437
882	80	A1FL 250	437
882 BVSW	506	A1SC	436
883	80	A8FL 125	437
883 BVSW	506	AB-3000	168
		ADP-1	
981	82	AEH Series	
981 BVSW		AF-10	
983		AFH-4000 Series	
983 BVSW		AFT-6.	
1010		AFT-8	
1010		AFT-12	
1013		AFT-16	
1013		AFT-10	
1032		Al2	
1033		Al3	
1100		Al4	
1810		AIC	
1811		AV-11	
1811N		AV-13	423/467
1822	102		
		B2	
2010		B3	
2011		B4	120
2022		B5	120
2313-HLS		B6	120
2313-HLAR	462	B8	120
2315-HLS	516	BD-2	413
2315-HLAR	462	BD-3	413
2316-HLS	516	BD-4	413
2316-HLAR	462	BD-5	413
2413-HLS	516	B1FL 150	439
2413-HLAR	462	B1FL 300	439
2415-HLS	516	B1FL 600	439
2415-HLAR		B1SC	
2416-HLS		B1SW	
2416-HLAR		BHC-4	
	402	BHC-6	
4011	106	BHC-8	
4011		BHC-10	
TULL	100	BHC-10	
5133G	04		
		BHS-4	
5133G-FW		BHS-6	
5155G		BHS-8	
5155G-FW	94	BHS-10	
		BI2	
6000		BI3	
besigns, materials, weights and performance ratings are appro	ixiniate allu subject to cl	hange without notice. Visit armstronginternational.com for up-to-da	te mormation.

Model No.	Page No
6155G	96
6155G-FW	96
25133G-HLAR	462
25133G-HLS	516
25155G-HLAR	462
25155G-HLS	516
26155G-HLAR	462
26155G-HLS	516
201000112011111111111111111111111111111	010
Α3	122
A4	122
A5	122
A6	122
A8	122
A1FL 125	437
A1FL 250	437
A1SC	436
A8FL 125	437
AB-3000	168
ADP-1	524
AEH Series	560
AF-10	283
AFH-4000 Series	253
AFT-6.	259
AFT-8.	259
AFT-12	259
AFT-16	259
Al Series F&T	122
Al2	122
AI3	122
Al4	122
AIC	124
AV-11	423/467
AV-13	423/467
B2	120
B3	120
Β4	120
B5	120
B6	120
B8	120
BD-2	413
BD-3	413
BD-4	413
BD-5	
B1FL 150	
B1FL 300	439
B1FL 600	439
B1SC	
B1SW	
BHC-4	412
BHC-6	
BHC-8	
BHC-10	412
BHS	
BHS-4	
BHS-6	412
BHS-8	412
BHS-10	412
BI2	120
DIO .	

Service, Training and Warranties

MODEL NUMBER INDEX

For model numbers/products arranged by product category, see the ID Charts at the beginning of each product section.

Model No.	Page No.	Model No.	Page No.
BI4	120	FBC-200	411
BK1FL 150		FBC-250	411
BK1FL 300		FBS	
BK1FL 600		FBS-125	
DI(II 2 000	+00	FBS-200	
C1FL	440	FBS-200	
C1SC		FF-4250	
C1SW		FF-4450	
CA1SC		FHC	
CA41SC		FHC-2	
CC-5	558	FHC-4	410
CC-12	558	FHC-112	240
CC-25	558	FHC-122	240
CC-40	558	FHS	410
CCA-204	180	FH4302	240
CCA-206		FH4312	240
CCA-208		FHS-2	
CCA-210		FHS-4	
		FHS-4028G	
CCA-212			
CCAF-204		FT-4075	
CCAF-206		FT-4150	
CCAF-208		FT-4225	
CCAF-210		FT-4300	
CCAF-212	180	FT-4465	130
CD-33	154		
CD-33L	154	GD-6	282
CD-33S	154	GD-6N	282
CD-33SL	154	GD-10	283
CD-41	158	GD-10F	283
CD-42	158	GD-20R	288
CD-43	158	GD-24	285
CD-61	158	GD-30	278
CD-62	158	GD-30S	278
CD-63		GD-45	
CD-3300 Series		GD-200	
CD-72S		GD-200H	
CD-72SL		GD-2000K	
007202	100	GP-2000CS	
D1SW	441	GP-1000	
DD4		GP-1000A	
DD4		GP-1000A	
DD12		GP-1000AS	291
DS-1		GP-2000	
DS-2		GP-2000 On/Off	
DS-3		GP-2000L	
DS-4	554	GP-2000K-1	
		GP-2000K-3	
E7FL 150		GP-2000K-6	
E7FL 300	443	GP-2000R	304
E7FL 600	443		
E7SC	442	HAFT-4	261
E7SW	442	HAFT-6	261
EK7FL 150	443	HAFT-8	261
EK7FL 300	443	HAFT-10	261
EK7FL 600	443		
EM		IB-4011	106
EV-4		IB-4022	
		IS-2 Connector	
F4SC	444	IS-4 Connector	
FBC		ICS Series	
FBC-125			

Service, Training and Warranties

Armstrong[®] MODEL NUMBER INDEX

For model numbers/products arranged by product category, see the ID Charts at the beginning of each product section.

Model No. JD8	Page No. 126/520
KD8	126/520 126/520 126/520
L8 (liquid drainer)	128 520 128 520 136 520 136 421
M12 (liquid drainer) M12 (steam trap). MS12 (liquid drainer). MS12 (steam trap). MS-6. MSD-04. MSD-08. MSD-12. MV-3.	128 520 136 559 178 178 178
OB-30 OB-31 OB-2000 OB-2000L OB-2000PT OBK-2000	310 312 314 316
PPC. PPF. PTC. PTF. PT-104. PT-204. PT-206. PT-300LL. PT-308. PT-312. PT-400LL. PT-404. PT-404. PT-406. PT-408. PT-412. PT-516. PT-3508. PT-3512.	239 239 210 212 212 225 218 225 218 225 214 214 214 214 214 222 216
RV-4	
SH-300 SH-4000 SH-900H SH-900L SH-1500 SH-2000	164 169 164 164 164 166

Model No. SH-2500 SMSD-04 SMSD-08 SMSD-12 SV-12	178
TAVB-2 TAVB-3 TC-300. TC-C TC-R TC-R TC-S TS-2.	172 172 161 174 174 174 173/424/ 466
TS-3. TT-2000. TTF-1. TTF-1R. TV-2. TVS 81-DC. TVS 82-DC. TVS 83-DC. TVS 83-DC. TVS 811. TVS 812. TVS 813. TVS 813. TVS 4000. TVS 4000F. TVS 1100. TVS 5000.	
VAFT1238BDV	260
WMT-1. WT-1. WT-3. WT-2000. WV-4.	160 162 162 162 421

Service, Training and Warranties

580

MODEL NUMBER INDEX

For model numbers/products arranged by product category, see the ID Charts at the beginning of each product section.

Product	Page No.
AIM [®]	198
Air Loaders	302
Armstrong University	
The Brain [®]	
Coil-A-ware [™]	359
Control Panels.	
Double Duty [®]	
Digital-Flo [®]	
Duramix [™] Heating Coil	
Emech [™]	
Flo-Direct [®]	546
Flo-Rite-Temp [™]	
Heavy Duty Coils.	
Hose Station	
Hot Bin [™] Heater	
Hot Breath [™] Heater	
Liquid Coils	
Rescue Cap [™] Non-Electric Steam/Air	001
Powered Pump	238
Stainless Steel Sump Ejector	556
Plate Fin Coils.	372
Posi-Pressure Control System	289
Python [®]	320
Mixing Valves	
Radiator Valve In-Service Repair Tool	
Steam Trap Options and Connectors	152/18/
SteamEye [®]	
SteamEye Transmitter.	
Steamix [®]	
SteamStar [™]	
T-Wafer Capsule	
Tank Heaters.	
Steam-A-ware [™]	
Unit Heaters	
Y Strainers	429

582

584